Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(1): e2304410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975267

RESUMO

Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Ligantes , Cinética , Termodinâmica
2.
Anal Chem ; 95(5): 2645-2652, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693249

RESUMO

Aptamers incorporating chemically modified bases can achieve superior affinity and specificity compared to natural aptamers, but their characterization remains a labor-intensive, low-throughput task. Here, we describe the "non-natural aptamer array" (N2A2) system, in which a minimally modified Illumina MiSeq instrument is used for the high-throughput generation and characterization of large libraries of base-modified DNA aptamer candidates based on both target binding and specificity. We first demonstrate the capability to screen multiple different base modifications to identify the optimal chemistry for high-affinity target binding. We next use N2A2 to generate aptamers that can maintain excellent specificity even in complex samples, with equally strong target affinity in both buffer and diluted human serum. For both aptamers, affinity was formally calculated with gold-standard binding assays. Given that N2A2 requires only minor mechanical modifications to the MiSeq, we believe that N2A2 offers a broadly accessible tool for generating high-quality affinity reagents for diverse applications.


Assuntos
Aptâmeros de Nucleotídeos , Humanos , Aptâmeros de Nucleotídeos/química , Bioensaio , Técnica de Seleção de Aptâmeros
4.
Nat Commun ; 12(1): 7106, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876561

RESUMO

Glycosylation is one of the most abundant forms of post-translational modification, and can have a profound impact on a wide range of biological processes and diseases. Unfortunately, efforts to characterize the biological function of such modifications have been greatly hampered by the lack of affinity reagents that can differentiate protein glycoforms with robust affinity and specificity. In this work, we use a fluorescence-activated cell sorting (FACS)-based approach to generate and screen aptamers with indole-modified bases, which are capable of recognizing and differentiating between specific protein glycoforms. Using this approach, we were able to select base-modified aptamers that exhibit strong selectivity for specific glycoforms of two different proteins. These aptamers can discriminate between molecules that differ only in their glycan modifications, and can also be used to label glycoproteins on the surface of cultured cells. We believe our strategy should offer a generally-applicable approach for developing useful reagents for glycobiology research.


Assuntos
Glicoproteínas/química , Indóis/química , Proteínas/química , Sítios de Ligação , Cristalografia por Raios X , Dictyostelium , Fetuínas , Citometria de Fluxo , Glicoproteínas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Indóis/metabolismo , Polissacarídeos/química , Proteínas/metabolismo
5.
Chem Sci ; 12(35): 11692-11702, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659704

RESUMO

Aptamers are widely employed as recognition elements in small molecule biosensors due to their ability to recognize small molecule targets with high affinity and selectivity. Structure-switching aptamers are particularly promising for biosensing applications because target-induced conformational change can be directly linked to a functional output. However, traditional evolution methods do not select for the significant conformational change needed to create structure-switching biosensors. Modified selection methods have been described to select for structure-switching architectures, but these remain limited by the need for immobilization. Herein we describe the first homogenous, structure-switching aptamer selection that directly reports on biosensor capacity for the target. We exploit the activity of restriction enzymes to isolate aptamer candidates that undergo target-induced displacement of a short complementary strand. As an initial demonstration of the utility of this approach, we performed selection against kanamycin A. Four enriched candidate sequences were successfully characterized as structure-switching biosensors for detection of kanamycin A. Optimization of biosensor conditions afforded facile detection of kanamycin A (90 µM to 10 mM) with high selectivity over three other aminoglycosides. This research demonstrates a general method to directly select for structure-switching biosensors and can be applied to a broad range of small-molecule targets.

6.
ACS Chem Biol ; 14(12): 2652-2662, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31532184

RESUMO

Base-modified aptamers that incorporate non-natural chemical moieties can achieve greatly improved affinity and specificity relative to natural DNA or RNA aptamers. However, conventional methods for generating base-modified aptamers require considerable expertise and resources. In this work, we have accelerated and generalized the process of generating base-modified aptamers by combining a click-chemistry strategy with a fluorescence-activated cell sorting (FACS)-based screening methodology that measures the affinity and specificity of individual aptamers at a throughput of ∼107 per hour. Our "click-particle display (PD)" strategy offers many advantages. First, almost any chemical modification can be introduced with a commercially available polymerase. Second, click-PD can screen vast numbers of individual aptamers on the basis of quantitative on- and off-target binding measurements to simultaneously achieve high affinity and specificity. Finally, the increasing availability of FACS instrumentation in academia and industry allows for easy adoption of click-PD in a broader scientific community. Using click-PD, we generated a boronic acid-modified aptamer with ∼1 µM affinity for epinephrine, a target for which no aptamer has been reported to date. We subsequently generated a mannose-modified aptamer with nanomolar affinity for the lectin concanavalin A (Con A). The strong affinity of both aptamers is fundamentally dependent upon the presence of chemical modifications, and we show that their removal essentially eliminates aptamer binding. Importantly, our Con A aptamer exhibited exceptional specificity, with minimal binding to other structurally similar lectins. Finally, we show that our aptamer has remarkable biological activity. Indeed, this aptamer is the most potent inhibitor of Con A-mediated hemagglutination reported to date.


Assuntos
Aptâmeros de Nucleotídeos/química , Química Click , Citometria de Fluxo
7.
ACS Sens ; 3(9): 1611-1615, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30156834

RESUMO

Aptamer biosensor that can switch its structure upon target binding offers a powerful strategy for molecular detection. However, the process of converting an aptamer into a "structure-switching" biosensor is challenging and often relies on trial-and-error without established design principles. In this Sensor Issues, we examine a variety of design approaches for incorporating structure-switching functionality into existing aptamers, and provide thermodynamic analyses to highlight the variables that most strongly influence their performance. Finally, we also describe emerging efforts for incorporating the structure-switching functionality directly into the aptamer selection process.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Engenharia Genética , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros , Termodinâmica
8.
Acc Chem Res ; 49(9): 1903-10, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27526193

RESUMO

Affinity reagents that specifically bind to their target molecules are invaluable tools in nearly every field of modern biomedicine. Nucleic acid-based aptamers offer many advantages in this domain, because they are chemically synthesized, stable, and economical. Despite these compelling features, aptamers are currently not widely used in comparison to antibodies. This is primarily because conventional aptamer-discovery techniques such as SELEX are time-consuming and labor-intensive and often fail to produce aptamers with comparable binding performance to antibodies. This Account describes a body of work from our laboratory in developing advanced methods for consistently producing high-performance aptamers with higher efficiency, fewer resources, and, most importantly, a greater probability of success. We describe our efforts in systematically transforming each major step of the aptamer discovery process: selection, analysis, and characterization. To improve selection, we have developed microfluidic devices (M-SELEX) that enable discovery of high-affinity aptamers after a minimal number of selection rounds by precisely controlling the target concentration and washing stringency. In terms of improving aptamer pool analysis, our group was the first to use high-throughput sequencing (HTS) for the discovery of new aptamers. We showed that tracking the enrichment trajectory of individual aptamer sequences enables the identification of high-performing aptamers without requiring full convergence of the selected aptamer pool. HTS is now widely used for aptamer discovery, and open-source software has become available to facilitate analysis. To improve binding characterization, we used HTS data to design custom aptamer arrays to measure the affinity and specificity of up to ∼10(4) DNA aptamers in parallel as a means to rapidly discover high-quality aptamers. Most recently, our efforts have culminated in the invention of the "particle display" (PD) screening system, which transforms solution-phase aptamers into "aptamer particles" that can be individually screened at high-throughput via fluorescence-activated cell sorting. Using PD, we have shown the feasibility of rapidly generating aptamers with exceptional affinities, even for proteins that have previously proven intractable to aptamer discovery. We are confident that these advanced aptamer-discovery methods will accelerate the discovery of aptamer reagents with excellent affinities and specificities, perhaps even exceeding those of the best monoclonal antibodies. Since aptamers are reproducible, renewable, stable, and can be distributed as sequence information, we anticipate that these affinity reagents will become even more valuable tools for both research and clinical applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Ensaios de Triagem em Larga Escala/métodos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Dispositivos Lab-On-A-Chip
9.
J Am Chem Soc ; 138(20): 6328-31, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27159220

RESUMO

Aptamer-based sensors provide a versatile and effective platform for the detection of chemical and biological targets. These sensors have been optimized to function in multiple formats, however, a remaining limitation is the inability to achieve temporal control over their sensing function. To overcome this challenge, we took inspiration from nature's ability to temporally control the activity of enzymes and protein receptors through covalent self-caging. We applied this strategy to structure-switching aptamer sensors through the installation of a cleavable linker between the two DNA fragments that comprise the sensor. Analogous to self-caged proteins, installation of this linker shifts the equilibrium of the aptamer sensor to disfavor target binding. However, activity can be restored in a time-resolved manner by cleavage of the linker. To demonstrate this principle, we chose a photocleavable linker and found that installation of the linker eliminates target binding, even at high target concentrations. However, upon irradiation with 365 nm light, sensor activity is restored with response kinetics that mirror those of the linker cleavage reaction. A key benefit of our approach is generality, which is demonstrated by grafting the photocleavable linker onto a different aptamer sensor and showing that an analogous level of temporal control can be achieved for sensing of the new target molecule. These results demonstrate that nature's self-caging approach can be effectively applied to non-natural receptors to provide precise temporal control over function. We envision that this will be of especially high utility for deploying aptamer sensors in biological environments.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , DNA/química , Cinética
10.
J Am Chem Soc ; 137(12): 4198-206, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25747268

RESUMO

Distinguishing between the two enantiomers of a molecule is a challenging task due to their nearly identical physical properties. Time-consuming chromatography methods are typically required for this task, which greatly limits the throughput of analysis. Here we describe a fluorescence-based method for the rapid and high-throughput analysis of both small-molecule enantiopurity and concentration. Our approach relies on selective molecular recognition of one enantiomer of the target molecule using a DNA aptamer, and the ability of aptamer-based biosensors to transduce the presence of a target molecule into a dose-dependent fluorescence signal. The key novel aspect of our approach is the implementation of enantiomeric DNA biosensors, which are synthesized from D- and L-DNA, but labeled with orthogonal fluorophores. According to the principle of reciprocal chiral substrate specificity, these biosensors will bind to opposite enantiomers of the target with equal affinity and selectivity, enabling simultaneous quantification of both enantiomers of the target. Using the previously reported DNA biosensor for L-tyrosinamide (L-Tym), we demonstrate the ability to rapidly and accurately measure both enantiopurity and concentration for mixtures of L- and D-Tym. We also apply our enantiomeric biosensors to the optimization of reaction conditions for the synthesis of D-Tym and provide mathematical modeling to suggest that DNA biosensors having only modest binding selectivity can also be used for fluorescence-based enantiopurity measurement. This research provides a generalizable method for high-throughput analysis of reaction mixtures, which is anticipated to significantly accelerate reaction optimization for the synthesis of high-value chiral small molecules.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Tirosina/análogos & derivados , Sequência de Bases , Técnicas Biossensoriais/métodos , DNA/química , Ensaios de Triagem em Larga Escala/métodos , Conformação de Ácido Nucleico , Estereoisomerismo , Tirosina/análise , Tirosina/isolamento & purificação
11.
J Nucleic Acids ; 2012: 354549, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848796

RESUMO

The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...