Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7871, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052784

RESUMO

Current differentiation protocols for generating mesencephalic dopaminergic (mesDA) neurons from human pluripotent stem cells result in grafts containing only a small proportion of mesDA neurons when transplanted in vivo. In this study, we develop lineage-restricted undifferentiated stem cells (LR-USCs) from pluripotent stem cells, which enhances their potential for differentiating into caudal midbrain floor plate progenitors and mesDA neurons. Using a ventral midbrain protocol, 69% of LR-USCs become bona fide caudal midbrain floor plate progenitors, compared to only 25% of human embryonic stem cells (hESCs). Importantly, LR-USCs generate significantly more mesDA neurons under midbrain and hindbrain conditions in vitro and in vivo. We demonstrate that midbrain-patterned LR-USC progenitors transplanted into 6-hydroxydopamine-lesioned rats restore function in a clinically relevant non-pharmacological behavioral test, whereas midbrain-patterned hESC-derived progenitors do not. This strategy demonstrates how lineage restriction can prevent the development of undesirable lineages and enhance the conditions necessary for mesDA neuron generation.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Mesencéfalo , Células-Tronco Pluripotentes/metabolismo
2.
Front Cell Dev Biol ; 11: 1229584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842085

RESUMO

Vacuolar protein sorting 10 protein (VPS10P) domain receptors are a unique class of intracellular sorting receptors that emerge as major risk factors associated with psychiatric and neurodegenerative diseases, including bipolar disorders, autism, schizophrenia, as well as Alzheimer's disease and frontotemporal dementia. Yet, the lack of suitable experimental models to study receptor functions in the human brain has hampered elucidation of receptor actions in brain disease. Here, we have adapted protocols using human cerebral organoids to the detailed characterization of VPS10P domain receptor expression during neural development and differentiation, including single-cell RNA sequencing. Our studies uncovered spatial and temporal patterns of expression unique to individual receptor species in the human brain. While SORL1 expression is abundant in stem cells and SORCS1 peaks in neural progenitors at onset of neurogenesis, SORT1 and SORCS2 show increasing expression with maturation of neuronal and non-neuronal cell types, arguing for distinct functions in development versus the adult brain. In neurons, subcellular localization also distinguishes between types of receptor species, either mainly localized to the cell soma (SORL1 and SORT1) or also to neuronal projections (SORCS1 and SORCS2), suggesting divergent functions in protein sorting between Golgi and the endo-lysosomal system or along axonal and dendritic tracks. Taken together, our findings provide an important resource on temporal, spatial, and subcellular patterns of VPS10P domain receptor expression in cerebral organoids for further elucidation of receptor (dys) functions causative of behavioral and cognitive defects of the human brain.

3.
Methods Mol Biol ; 2239: 135-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33226617

RESUMO

Human-induced pluripotent stem cells (iPSCs) can be generated from patient-specific somatic cells by forced expression of the transcription factors OCT4, SOX2, KLF4, and c-MYC. Sustained expression of the transgenes during reprogramming is crucial for the successful derivation of iPSCs. Integrating retroviruses have been used to achieve the required prolonged expression; however, issues of undesirable transgene expression in the iPSC-derived cell types post reprogramming can occur. Alternative non-integrating approaches to reprogram somatic cells into pluripotency have been established. Here, we describe a detailed method for generating human iPSCs from fibroblasts and peripheral blood mononuclear cells (PBMCs) using the non-integrating episomal plasmids. The delivery of the episomal plasmids into the somatic cells is achieved using a nucleofection technique, and reprogramming is performed in chemically defined media. This process takes approximately 30 days to establish the iPSC colonies. We also describe a method for growing iPSCs on vitronectin as well as procedures for the long-term expansion of iPSCs on human fibroblast feeder cells.


Assuntos
Reprogramação Celular/genética , Meios de Cultura/química , Células-Tronco Pluripotentes Induzidas/citologia , Plasmídeos/metabolismo , Fatores de Transcrição/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Eletroporação/métodos , Células Alimentadoras , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Plasmídeos/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Vitronectina
4.
Stem Cell Res ; 48: 101945, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32791483

RESUMO

The differentiation of patient-specific induced pluripotent stem cells (iPSCs) into specific neuronal subtypes has been exploited as an approach for modeling a variety of neurological disorders. However, achieving a highly pure population of neurons is challenging when using directed differentiation methods, especially for neuronal subtypes generated by complex and protracted protocols. In this study, we efficiently produced highly pure populations of regionally specified CNS neurons by using a modified NGN2-Puromycin direct conversion protocol. The protocol is amenable across a range of iPSC lines, with more than 95% of cells at day 21 positive for the neuronal marker MAP2. We found that conversion from pluripotent stem cells resulted in neurons from the central and peripheral nervous system; however, by incorporating a short CNS patterning step, we eliminated these peripheral neurons. Furthermore, we used the patterning step to control the rostral-caudal identity. This approach of sequential patterning and conversion produced pure populations of forebrain neurons, when patterned with SMAD inhibitors. Additionally, when SMAD inhibitors and WNT agonists were applied, the approach produced anterior hindbrain excitatory neurons and resulted in a neuronal population containing VSX2/SHOX2 V2a interneurons. Overall, this sequential patterning and conversion protocol can be used for the production of a variety of CNS excitatory neurons from patient-derived iPSCs, and is a highly versatile system for investigating early disease events for a range of neurological disorders including Alzheimer's disease, motor neurons disease and spinal cord injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Neurônios
5.
Stem Cell Res ; 45: 101781, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32305865

RESUMO

We generated an induced pluripotent stem cell (iPSC) line from fibroblasts of a clinically diagnosed 70 year old female Parkinson's disease (PD) patient heterozygous for a pathogenic missense variant (p.G2019S; c. 6055 G > A) in the leucine-rich repeat kinase 2 (LRRK2) gene by using non-integrating Sendai viruses. The DANi-011A iPSC line has a normal karyotype and is free from Sendai viruses. The expression of pluripotent markers in the iPSC line was confirmed by immunofluorescent staining, and we confirmed its ability to differentiate into the three germ layers. The DANi-011A iPSC line can be used for modeling PD and as a drug-screening platform.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Idoso , Linhagem Celular , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética
6.
Stem Cell Res ; 42: 101657, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786474

RESUMO

We generated eight induced pluripotent stem cell (iPSC) lines from Parkinson's disease (PD) patients with different familial mutations using non-integrating episomal plasmids. All iPSC lines have a normal karyotype, express pluripotent genes including POU5F1, NANOG, and show alkaline phosphatase activity, as well as the ability to differentiate into all three germ layers. These PD iPSC lines can be used for disease modeling to identify PD mechanisms and for the development or stratification of new drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Adulto , Linhagem Celular , Humanos , Pessoa de Meia-Idade , Mutação , Doença de Parkinson/patologia
7.
Front Cell Neurosci ; 12: 148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973870

RESUMO

Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient. Post mortem quantitative histopathology was used to examine the effect of stress on parvalbumin (PV)-, calretinin- (CR), calbindin- (CB), cholecystokinin- (CCK), somatostatin-(SST) and neuropeptide Y-positive (NPY+) GABAergic neuron numbers in all cortical subareas of the mPFC (anterior cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) cortexes). In vitro, whole-cell patch-clamp recordings from layer II-III pyramidal neurons of the ventral mPFC was used to examine GABAergic neurotransmission. The cognitive performance of the animals was assessed in a hippocampal-prefrontal-cortical circuit dependent learning task. Stress exposure reduced the number of CCK-, CR- and PV-positive GABAergic neurons in the mPFC, most prominently in the IL cortex. Interestingly, in the stress-resilient animals, we found higher number of neuropeptide Y-positive neurons in the entire mPFC. The electrophysiological analysis revealed reduced frequencies of spontaneous and miniature IPSCs in the anhedonic rats and decreased release probability of perisomatic-targeting GABAergic synapses and alterations in GABAB receptor mediated signaling. In turn, pyramidal neurons showed higher excitability. Anhedonic rats were also significantly impaired in the object-place paired-associate learning task. These data demonstrate that long-term stress results in functional and structural deficits of prefrontal GABAergic networks. Our findings support the concept that fronto-limbic GABAergic dysfunctions may contribute to emotional and cognitive symptoms of MDD.

8.
Front Cell Dev Biol ; 6: 54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868584

RESUMO

Gene editing in human embryonic stem cells (hESCs) has been significantly enhanced by the discovery and development of CRISPR Cas9, a programmable nuclease system that can introduce targeted double-stranded breaks. The system relies on the optimal selection of a sgRNA sequence with low off-targets and high efficiency. We designed an improved monomeric red fluorescent protein reporter, GEmCherry2, for assessing CRISPR Cas9 activity and for optimizing sgRNA. By incorporating an out-of-frame sequence to the N-terminal of the red fluorescent protein mCherry, we created a visual tool for assessing the indel frequency after cutting with CRISPR Cas9. When a sgRNA-Cas9 construct is co-transfected with a corresponding GEmCherry2 construct, single nucleotide indels can move the GEmCherry2 sequence back in-frame and allow quantification and comparison of the efficiency of different sgRNA target sites by measuring red fluorescence. With this GEmCherry2 assay, we compared four target sites in the safe harbor AAVS1 locus and found significant differences in target site activity. We verified the activity using TIDE, which ranked our target sites in a similar order as the GEmCherry2 system. We also identified an AAV short inverted terminal repeat sequence within the Cas9 construct that, upon removal significantly improved transient transfection and expression in hESCs. Moreover, using GEmCherry2, we designed a sgRNA to target SORCS2 in hESCs and successfully introduced indels into the coding sequence of SORCS2.

9.
Front Cell Dev Biol ; 6: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468158

RESUMO

The P-type ATPases family consists of ion and lipid transporters. Their unique diversity in function and expression is critical for normal development. In this study we investigated human pluripotent stem cells (hPSC) and different neural progenitor states to characterize the expression of the plasma membrane calcium ATPases (PMCAs) during human neural development and in mature mesencephalic dopaminergic (mesDA) neurons. Our RNA sequencing data identified a dynamic change in ATPase expression correlating with the differentiation time of the neural progenitors, which was independent of the neuronal progenitor type. Expression of ATP2B1 and ATP2B4 were the most abundantly expressed, in accordance with their main role in Ca2+ regulation and we observed all of the PMCAs to have a subcellular punctate localization. Interestingly in hPSCs ATP2B1 and ATP2B3 were highly expressed in a cell cycle specific manner and ATP2B2 and ATP2B4 were highly expressed in a hPSC sub-population. In neural rosettes a strong apical PMCA expression was identified in the luminal region. Lastly, we confirmed all PMCAs to be expressed in mesDA neurons, however at varying levels. Our results reveal that PMCA expression dynamically changes during stem cell differentiation and highlights the diverging needs of cell populations to regulate and properly integrate Ca2+ changes, which can ultimately correspond to changes in specific stem cell transcription states.

10.
PLoS One ; 12(6): e0179434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28622391

RESUMO

BACKGROUND: Stress and stressful life events have repeatedly been shown as causally related to depression. The Chronic Mild Stress rat model is a valid model of stress-induced depression. Like humans, rats display great heterogeneity in their response to stress and adversity. Hence some individuals are stress-sensitive and prone to develop depression-like behaviour in response to modest stressors, while others are stress-resilient and remain essentially symptom free. OBJECTIVES: Compared to the large body of research, which describes stress-induced maladaptive neurobiological changes, relatively little attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c-Fos expression have been reported as associated to stressful conditions. METHODS: Stress-induced modulation of neuronal activation patterns in response to the chronic mild stress paradigm was mapped using the immediate early gene expression c-Fos as a marker. Quantification of the c-Fos-like immunoreactivity responses was done by semi-automated profile counting procedures and design-based stereology. RESULTS: Exposure to chronic mild stress significantly altered c-Fos expression in a total of 6 out of 13 investigated areas. Chronic mild stress was found to suppress the c-Fos response within the magnocellular ventral lateral geniculate nucleus of both stress subgroups. In the the lateral and ventral orbital cortices of stress-resilient rats, the c-Fos like immunoreactivity response was also repressed by stress exposure. On the contrary the c-Fos response within the amygdala, medial habenula, and infralimbic cortex was increased selectively for the stress-susceptible rats. CONCLUSIONS: The study was initiated to characterize neuronal substrates associated with stress-coping mechanisms. Six areas, all of which represents limbic structures, were found to be sensitive to stress exposure. The effects within these areas associate to the hedonic status of the rats. Hence, these areas might be associated to stress-coping mechanisms underlying the chronic mild stress induced segregation into stress-susceptible and stress-resilient endophenotypes.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-fos/biossíntese , Estresse Psicológico/metabolismo , Animais , Encéfalo/patologia , Suscetibilidade a Doenças , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/patologia
11.
Stem Cells ; 33(6): 1759-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25753817

RESUMO

The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3ß and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.


Assuntos
Linhagem da Célula , Sistema Nervoso Central/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Tubo Neural/citologia , Sistema Nervoso Periférico/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Placa Neural/citologia , Células Neuroepiteliais/citologia , Ratos Sprague-Dawley
12.
Neurobiol Dis ; 56: 47-58, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23567651

RESUMO

Alpha-synuclein phosphorylated at serine 129 (S129) is highly elevated in Parkinson's disease patients where it mainly accumulates in the Lewy bodies. Several groups have studied the role of phosphorylation at the S129 in α-synuclein in a rat model for Parkinson's disease using recombinant adeno-associated viral (rAAV) vectors. The results obtained are inconsistent and accordingly the role of S129 phosphorylation in α-synuclein toxicity remains unclear. This prompted us to re-examine the neuropathological and behavioral effects of the S129 modified α-synuclein species in vivo. For this purpose, we used two mutated forms of human α-synuclein in which the S129 was replaced either with an alanine (S129A), to block phosphorylation, or with an aspartate (S129D), to mimic phosphorylation, and compared them with the wild type α-synuclein. This approach was similar in design to previous studies, however our investigation of dopaminergic degeneration also included performing a detailed study of the α-synuclein induced pathology in the striatum and the analysis of motor deficits. Our results showed that overexpressing S129D or wild type α-synuclein resulted in an accelerated dopaminergic fiber loss as compared with S129A α-synuclein. Furthermore, the motor deficit seen in the group treated with the mutant S129D α-synuclein appeared earlier than the other two forms of α-synuclein. Conversely, S129A α-synuclein showed significantly larger pathological α-synuclein-positive inclusions, and slower dopaminergic fiber loss, when compared to the other two forms of α-synuclein, suggesting a neuroprotective effect of the mutation. When examined at long-term, all three α-synuclein forms resulted in pathological accumulations of α-synuclein in striatal fibers and dopaminergic cell death in the substantia nigra. Our data show that changes in the S129 residue of α-synuclein influence the rate of pathology and neurodegeneration, with an overall deleterious effect of exchanging S129 to a residue mimicking its phosphorylated state.


Assuntos
Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Mutação/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Serina/genética , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Densitometria , Dependovirus/genética , Dopamina/fisiologia , Feminino , Vetores Genéticos , Imuno-Histoquímica , Fosforilação , Ratos , Ratos Sprague-Dawley , Transgenes
13.
Exp Neurol ; 247: 45-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23531432

RESUMO

Parkinson's disease is characterized by neuronal death in the substantia nigra and the presence of intracellular inclusions of α-synuclein in the Lewy bodies. Several lines of data support a role for iron in Parkinson's disease: iron is present in Lewy bodies, iron accumulates in the dopaminergic neurons in the substantia nigra, and Parkinson's disease is correlated with polymorphisms of several genes implicated in iron metabolism. Furthermore, iron can compromise the solubility of α-synuclein through direct interaction and can induce neurotoxicity in vitro. Here, we investigate the possible neuroprotective effect of the iron chelator deferoxamine in vivo to elucidate whether iron chelation can provide meaningful therapy for Parkinson's disease. Hence, we used a Parkinson's disease animal model based on unilateral injection of a recombinant adeno-associated viral vector encoding α-synuclein in the rat midbrain. Rats were treated with a novel deferoxamine delivery approach: 6 mg of the compound was administered intranasally three times a week for 3 or 7 weeks. The behavior of the animals and histopathological changes in the brain were analyzed. Our data show that although intranasal administration of deferoxamine in rats did not protect them from dopaminergic cell death, it did decrease the number of the pathological α-synuclein formations at the terminal level. In addition, this treatment resulted in changes in the immune response and an overall partial improvement in motor behavior. Taken together, our data show that in vivo iron chelation can modulate α-synuclein-induced pathology in the central nervous system. Our data suggest that chronic administration of intranasal deferoxamine may be a valid approach to limiting the mishandling of α-synuclein in the central nervous system observed in Parkinson's disease and slowing disease progression.


Assuntos
Desferroxamina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Sideróforos/administração & dosagem , alfa-Sinucleína/toxicidade , Administração Intranasal , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular Transformada , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dextroanfetamina , Modelos Animais de Doenças , Feminino , Membro Anterior/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Humanos , Proteínas do Tecido Nervoso/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/toxicidade , Fatores de Tempo , Transfecção , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Neuroreport ; 23(9): 576-80, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22581044

RESUMO

Several studies have suggested an interaction between α-synuclein protein and iron in Parkinson's disease. The presence of iron together with α-synuclein in Lewy bodies, the increase of iron in the substantia nigra and the correlation between polymorphism of the several genes implicated in iron metabolism and Parkinson's disease, support a role for iron in the neurodegeneration. Analysis of post mortem brains revealed increased amount of insoluble α-synuclein protein despite unchanged/reduced levels of α-synuclein mRNA in Parkinson's disease. Interestingly, on the basis of the presence of a putative iron responsive element in the 5'-UTR, it has been suggested that there is a possible iron-dependent translational control of human α-synuclein mRNA. Considering the similarity between the sequences present in human α-synuclein mRNA and the ferritin iron responsive element, we postulated that iron deficiency would decrease the translation of α-synuclein mRNA. Here we used HEK293 cells treated with iron chelator deferoxamine or ferric ammonium citrate to verify the possible iron-dependent translational control of human α-synuclein biosynthesis. We show that the amount of polysome-associated endogenous human α-synuclein mRNA decreases in presence of deferoxamine. Our data demonstrate that human α-synuclein expression is regulated by iron mainly at the translational level. This result not only supports a role for iron in the translational control of α-synuclein expression, but also suggests that iron chelation may be a valid approach to control α-synuclein levels in the brain.


Assuntos
Encéfalo/metabolismo , Ferro/fisiologia , Doença de Parkinson/metabolismo , RNA Mensageiro/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Desferroxamina/farmacologia , Compostos Férricos/farmacologia , Células HEK293 , Humanos , Rim/citologia , Corpos de Lewy/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , RNA Mensageiro/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Roedores , Sideróforos/farmacologia , alfa-Sinucleína/biossíntese , alfa-Sinucleína/efeitos dos fármacos
15.
Eur J Neurosci ; 32(3): 409-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20704592

RESUMO

Lewy bodies, which are a pathological hallmark of Parkinson's disease, contain insoluble polymers of alpha-synuclein (alphasyn). Among the different modifications that can promote the formation of toxic alphasyn species, C-terminal truncation is among the most abundant alterations in patients with Parkinson's disease. In vitro, C-terminal truncated alphasyn aggregates faster and sub-stoichiometric amounts of C-terminal truncated alphasyn promote aggregation of the full-length alphasyn (alphasynFL) and induce neuronal toxicity. To address in vivo the putative stimulation of alphasyn-induced pathology by the presence of truncated alphasyn, we used recombinant adeno-associated virus to express either alphasynFL or a C-terminal truncated alphasyn (1-110) in rats. We adjusted the recombinant adeno-associated virus vector concentrations so that either protein alone led to only mild to moderate axonal pathology in the terminals of nigrostriatal dopamine neurons without frank cell loss. When these two forms of alphasyn were co-expressed at these pre-determined levels, it resulted in a more aggressive pathology in fiber terminals as well as dopaminergic cell loss in the substantia nigra. Using an antibody that did not detect the C-terminal truncated alphasyn (1-110) but only alphasynFL, we demonstrated that the co-expressed truncated protein promoted the progressive accumulation of alphasynFL and formation of larger pathological accumulations. Moreover, in the co-expression group, three of the eight animals showed apomorphine-induced turning, suggesting prominent post-synaptic alterations due to impairments in the dopamine release, whereas the mild pathology induced by either form alone did not cause motor abnormalities. Taken together these data suggest that C-terminal truncated alphasyn can interact with and exacerbate the formation of pathological accumulations containing alphasynFL in vivo.


Assuntos
Corpo Estriado/patologia , Neurônios/patologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Análise de Variância , Animais , Corpo Estriado/metabolismo , Dependovirus/metabolismo , Dopamina/metabolismo , Imuno-Histoquímica , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
PLoS One ; 5(1): e8784, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20098715

RESUMO

Post-mortem analysis of brains from Parkinson's disease (PD) patients strongly supports microglia activation and adaptive immunity as factors contributing to disease progression. Such responses may be triggered by alpha-synuclein (alpha-syn), which is known to be the main constituent of the aggregated proteins found in Lewy bodies in the brains of PD patients. To investigate this we used a recombinant viral vector to express human alpha-syn in rat midbrain at levels that induced neuronal pathology either in the absence or the presence of dopaminergic cell death, thereby mimicking early or late stages of the disease. Microglia activation was assessed by stereological quantification of Mac1+ cells, as well as the expression patterns of CD68 and MCH II. In our study, when alpha-syn induced neuronal pathology but not cell death, a fast transient increase in microglia cell numbers resulted in the long-term induction of MHC II+ microglia, denoting antigen-presenting ability. On the other hand, when alpha-syn induced both neuronal pathology and cell death, there was a delayed increase in microglia cell numbers, which correlated with long-lasting CD68 expression and a morphology reminiscent of peripheral macrophages. In addition T-lymphocyte infiltration, as judged by the presence of CD4+ and CD8+ cells, showed distinct kinetics depending on the degree of neurodegeneration, and was significantly higher when cell death occurred. We have thus for the first time shown that the microglial response differs depending on whether alpha-syn expression results on cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, our data suggest that the microglial response is modulated by early events related to alpha-syn expression in substantia nigra and persists at the long term.


Assuntos
Dependovirus/patogenicidade , Microglia/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Antígenos CD/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Recombinação Genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Biol Chem ; 284(15): 10211-22, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19203998

RESUMO

Multiple system atrophy is a neurodegenerative disorder characterized by accumulation of aggregated Ser-129-phosphorylated alpha-synuclein in oligodendrocytes. p25alpha is an oligodendroglial protein that potently stimulates alpha-synuclein aggregation in vitro. To model multiple system atrophy, we coexpressed human p25alpha and alpha-synuclein in the rat oligodendroglial cell line OLN-93 and observed a cellular response characterized by a fast retraction of microtubules from the cellular processes to the perinuclear region followed by a protracted development of apoptosis. This response was dependent on phosphorylation at Ser-129 in alpha-synuclein as demonstrated by site-directed mutagenesis. Treatment of the cells with the kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H benzimidazole that targets kinases like casein kinase 2, and polo-like kinases abrogated the toxicity. The polo-like kinase inhibitor BI 2536 caused apoptosis in the model. Ser-129 phosphorylation was linked to the formation of phosphorylated oligomers detectable by immunoblotting, and their formation was inhibited by 2-dimethylamino-4,5,6,7-tetrabromo-1H benzimidazole. The process of microtubule retraction was also dependent on aggregation as demonstrated by the protective effect of treating the cells with the specific peptide inhibitor of alpha-synuclein aggregation ASI1D and the non-selective inhibitors Congo Red and baicalein. The fast microtubule retraction was followed by the development of the apoptotic markers: activated caspase-3, phosphatidylserine externalization, nuclear condensation, and fragmentation. These markers could all be blocked by the inhibitors of phosphorylation, aggregation, and caspase-3. Hence, the model predicts that both Ser-129 phosphorylation and aggregation control the toxic alpha-syn pathway in oligodendroglial cells and may represent therapeutic intervention points in multiple system atrophy.


Assuntos
Oligodendroglia/metabolismo , Serina/química , alfa-Sinucleína/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Morte Celular , Linhagem Celular , Vermelho Congo/farmacologia , Flavanonas/farmacologia , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Modelos Biológicos , Fosforilação , Ratos
18.
Mol Cell Neurosci ; 35(2): 302-10, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17434747

RESUMO

Synaptic transmission in the striatum is regulated by metabotropic glutamate (mGlu) receptors through pre- and postsynaptic mechanisms. We investigated the involvement of mGlu 1 and 5 receptors in the control of both excitatory and inhibitory transmission in the striatum. The mGlu 1 and 5 receptor agonist 3,5-DHPG failed to affect glutamate transmission, while it caused a biphasic effect on GABA transmission, characterized by early increase and late decrease in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from striatal principal neurons. Both mGlu 1 and 5 receptors were involved in the early response to 3,5-DHPG, through membrane depolarization of striatal GABAergic interneurons and action potential generation. The 3,5-DHPG-mediated late depression of inhibitory inputs to striatal principal neurons was conversely secondary to mGlu 5 receptor activation and subsequent endocannabinoid release. In conclusion, we have identified an mGlu-dependent mechanism of GABA transmission regulation of potential relevance for physiological neuronal activity.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Corpo Estriado/citologia , Endocanabinoides , Interneurônios/fisiologia , Inibição Neural/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Moduladores de Receptores de Canabinoides/antagonistas & inibidores , Cromonas/farmacologia , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5 , Transmissão Sináptica/fisiologia , Tetrodotoxina/farmacologia , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...