Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(6): 2379-2394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38245858

RESUMO

Increasing rainfall variability is widely expected under future climate change scenarios. How will savanna trees and grasses be affected by growing season dry spells and altered seasonality and how tightly coupled are tree-grass phenologies with rainfall? We measured tree and grass responses to growing season dry spells and dry season rainfall. We also tested whether the phenologies of 17 deciduous woody species and the Soil Adjusted Vegetation Index of grasses were related to rainfall between 2019 and 2023. Tree and grass growth was significantly reduced during growing season dry spells. Tree growth was strongly related to growing season soil water potentials and limited to the wet season. Grasses can rapidly recover after growing season dry spells and grass evapotranspiration was significantly related to soil water potentials in both the wet and dry seasons. Tree leaf flushing commenced before the rainfall onset date with little subsequent leaf flushing. Grasses grew when moisture became available regardless of season. Our findings suggest that increased dry spell length and frequency in the growing season may slow down tree growth in some savannas, which together with longer growing seasons may allow grasses an advantage over C3 plants that are advantaged by rising CO2 levels.


Assuntos
Pradaria , Poaceae , Poaceae/fisiologia , Ecossistema , Árvores/fisiologia , Solo , Estações do Ano , Água
2.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165205

RESUMO

Recent findings point to plant root traits as potentially important for shaping the boundaries of biomes and for maintaining the plant communities within. We examined two hypotheses: 1) Thin-rooted plant strategies might be favored in biomes with low soil resources; and 2) these strategies may act, along with fire, to maintain the sharp boundary between the Fynbos and Afrotemperate Forest biomes in South Africa. These biomes differ in biodiversity, plant traits, and physiognomy, yet exist as alternative stable states on the same geological substrate and in the same climate conditions. We conducted a 4-y field experiment to examine the ability of Forest species to invade the Fynbos as a function of growth-limiting nutrients and belowground plant-plant competition. Our results support both hypotheses: First, we found marked biome differences in root traits, with Fynbos species exhibiting the thinnest roots reported from any biome worldwide. Second, our field manipulation demonstrated that intense belowground competition inhibits the ability of Forest species to invade Fynbos. Nitrogen was unexpectedly the resource that determined competitive outcome, despite the long-standing expectation that Fynbos is severely phosphorus constrained. These findings identify a trait-by-resource feedback mechanism, in which most species possess adaptive traits that modify soil resources in favor of their own survival while deterring invading species. Our findings challenge the long-held notion that biome boundaries depend primarily on external abiotic constraints and, instead, identify an internal biotic mechanism-a selective feedback among traits, plant-plant competition, and ecosystem conditions-that, along with contrasting fire regime, can act to maintain biome boundaries.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , África do Sul
3.
J Anim Ecol ; 90(7): 1753-1763, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844850

RESUMO

Global climate change is predicted to increase the frequency of droughts, with major impacts on tropical savannas. It has been suggested that during drought, increased soil moisture and nutrients on termite mounds could benefit plants but it is unclear how such benefits could cascade to affect insect communities. Here, we describe the effects of drought on vegetation structure, the cascading implications for invertebrates and how termite mounds influence such effects. We compared how changes in grass biomass affected grasshopper and ant diversity on and off Macrotermes mounds before (2012) and during a drought (2016) at two locations that experienced large variation in drought severity (Skukuza and Pretoriuskop) in the Kruger National Park, South Africa. The 2013-2016 drought was not ubiquitous across the study site, with rainfall decreasing at Skukuza and being above average at Pretoriuskop. However, grass biomass declined at both locations. Grasshopper abundance decreased at droughted Skukuza both on and off mounds but decreased on mounds and increased off mounds at non-droughted Pretoriuskop. Ant abundance and species richness increased at Skukuza but remained the same on mounds and decreased off mounds at Pretoriuskop. Our results demonstrate the spatially extensive effects of drought. Despite above average rainfall in 2016 at Pretoriuskop, grass biomass decreased, likely due to an influx of large mammalian herbivores from drought-affected areas. This decrease in grass biomass cascaded to affect grasshoppers and ants, further illustrating the effects of drought on invertebrates in adjoining areas with higher rainfall. Our grasshopper results also suggest that increased drought in savannas will contribute to overall declines in insect abundance. Moreover, our recorded increase in ant abundance was primarily in the form of increases in dominant species, illustrating how drought-induced shifts in relative abundance will likely influence ecosystem structure and function. Our study highlights the phenomenon of spill-over drought effects and suggests rather than mitigating drought, termite mounds can instead become the focus for more intense grazing, with important consequences for insect communities.


Assuntos
Pradaria , Herbivoria , Animais , Secas , Ecossistema , Insetos , Refúgio de Vida Selvagem , África do Sul
4.
Ecol Evol ; 10(18): 9776-9787, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005344

RESUMO

Deep roots have long been thought to allow trees to coexist with shallow-rooted grasses. However, data demonstrating how root distributions affect water uptake and niche partitioning are uncommon.We describe tree and grass root distributions using a depth-specific tracer experiment six times over two years in a subtropical savanna, Kruger National Park, South Africa. These point-in-time measurements were then used in a soil water flow model to simulate continuous water uptake by depth and plant growth form (trees and grasses) across two growing seasons. This allowed estimates of the total amount of water a root distribution could absorb as well as the amount of water a root distribution could absorb in excess of the other rooting distribution (i.e., unique hydrological niche).Most active tree and grass roots were in shallow soils: The mean depth of water uptake was 22 cm for trees and 17 cm for grasses. Slightly deeper rooting distributions provided trees with 5% more soil water than the grasses in a drier season, but 13% less water in a wetter season. Small differences also provided each rooting distribution (tree or grass) with unique hydrological niches of 4 to 13 mm water.The effect of rooting distributions has long been inferred. By quantifying the depth and timing of water uptake, we demonstrated how even small differences in rooting distributions can provide plants with resource niches that can contribute to species coexistence. Differences in total water uptake and unique hydrological niche sizes were small in this system, but they indicated that tradeoffs in rooting strategies can be expected to contribute to tree and grass coexistence because 1) competitive advantages change over time and 2) plant growth forms always have access to a soil resource pool that is not available to the other plant growth form.

5.
Glob Chang Biol ; 26(5): 2841-2853, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32069369

RESUMO

Large herbivores, particularly wide-ranging species, are extensively impacted by land use transformation and other anthropogenic barriers to movement. The adaptability of a species is, therefore, crucial to determining whether populations can persist in ever smaller subsets of their historical home ranges. Access to water, by drinking or from forage moisture, is an essential requirement, and surface water provision is thus a long-established, although controversial, conservation practice. In the arid Kgalagadi Transfrontier Park (KTP), South Africa, surface water provision in the 1930s facilitated the establishment of a sedentary wildebeest (Connochaetes taurinus) population in a region historically accessed only in the wet season, via now collapsed long-distance movements. Here, we investigate the behaviour and diet of this wildebeest population, and how these relate to water in the landscape, to better understand the process of transitioning from a mobile to sedentary population. Data from 26 monthly surveys reveal that wildebeest distributions are shaped by water availability and salinity, shade, forage, season and possibly predator detectability. Areas with saline or no water are used predominantly in the wet season when forage moisture is high. Wet season movements beyond the study area mean the timing of wildebeest grazing in these regions matches historical timing. Grass utilization field data suggest that the KTP grazer population experiences forage deficits during the dry season, when ~80% of grass tufts are grazed and C:N and crude protein levels decline. Nonetheless, dung isotope data show that wildebeest meet their crude protein intake requirements during the dry season, likely by consuming unprecedentedly high levels of browse (>33%). While restoring the full historical range and movements of most large herbivore populations is not possible, these findings highlight that understanding the behavioural and dietary adaptability of a species can augment 'next best' efforts to conserve viable populations while home ranges contract.


Assuntos
Antílopes , Animais , Herbivoria , Estações do Ano , África do Sul , Água
6.
Glob Chang Biol ; 26(2): 616-628, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31587449

RESUMO

Human activities affect fire in many ways, often unintentionally or with considerable time-lags before they manifest themselves. Anticipating these changes is critical, so that insidious impacts on ecosystems, their biodiversity and associated goods and services can be avoided, mitigated or managed. Here we explore the impact of anthropogenic land cover change on fire and biodiversity in adjacent ecosystems on the hyperdiverse Cape Peninsula, South Africa. We develop a conceptual framework based on the notion of an ignition catchment, or the spatial extent and temporal range where an ignition is likely to result in a site burning. We apply this concept using fire models to estimate spatial changes in burn probability between historical and current land cover. This change layer was used to predict the observed record of fires and forest encroachment into fire-dependent Fynbos ecosystems in Table Mountain National Park. Urban expansion has created anthropogenic fire shadows that are modifying fire return intervals, facilitating a state shift to low-diversity, non-flammable forest at the expense of hyperdiverse, flammable Fynbos ecosystems. Despite occurring in a conservation area, these ecosystems are undergoing a hidden collapse and desperately require management intervention. Anthropogenic fire shadows can be caused by many human activities and are likely to be a universal phenomenon, not only contributing to the observed global decline in fire activity but also causing extreme fires in ecosystems where there is no shift to a less flammable state and flammable fuels accumulate. The ignition catchment framework is highly flexible and allows detection or prediction of changes in the fire regime, the threat this poses for ecosystems or fire risk and areas where management interventions and/or monitoring are required. Identifying anthropogenic impacts on ignition catchments is key for both understanding global impacts of humans on fire and guiding management of human-altered landscapes for desirable outcomes.


Assuntos
Ecossistema , Florestas , Biodiversidade , Atividades Humanas , Humanos , África do Sul
7.
Funct Plant Biol ; 45(9): 935-944, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32291057

RESUMO

C3 plants can increase nutrient uptake by increasing transpiration, which promotes the flow of water with dissolved nutrients towards the roots. However, it is not clear if this mechanism of nutrient acquisition, termed 'mass flow', also operates in C4 plants. This is an important question, as differences in mass flow capacity may affect competitive interactions between C3 and C4 species. To test if mass flow can be induced in C4 species, we conducted an experiment in a semiarid seasonal savanna in South Africa. We grew six C4 grasses in nutrient-poor sand and supplied no nutrients, nutrients to the roots or nutrients spatially separated from the roots. We measured the rates of photosynthesis and transpiration, water-use efficiency (WUE), nitrogen gain and biomass. For all species biomass, N gain, photosynthesis and transpiration were lowest in the treatment without any nutrient additions. Responses to different nutrient positioning varied among species from no effect on N gain to a 50% reduction when nutrients were spatially separated. The ability to access spatially separated nutrients showed a nonsignificant positive relationship with both the response of transpiration and the response of WUE to spatial nutrient separation. This indicates that nutrient acquisition is not regulated by decreasing WUE in C4 grasses. Overall, our study suggests that under elevated CO2, when evaporative demand is lower, C4 species may be at a competitive disadvantage to C3 species when it comes to nutrient acquisition.

8.
Biol Lett ; 11(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26268994

RESUMO

Remote sensing studies suggest that savannahs are transforming into more tree-dominated states; however, progressive nitrogen limitation could potentially retard this putatively CO2-driven invasion. We analysed controls on nitrogen mineralization rates in savannah by manipulating rainfall and the cover of grass and tree elements against the backdrop of the seasonal temperature and rainfall variation. We found that the seasonal pattern of nitrogen mineralization was strongly influenced by rainfall, and that manipulative increases in rainfall could boost mineralization rates. Additionally, mineralization rates were considerably higher on plots with grasses and lower on plots with trees. Our findings suggest that shifting a savannah from a grass to a tree-dominated state can substantially reduce nitrogen mineralization rates, thereby potentially creating a negative feedback on the CO2-induced invasion of savannahs by trees.


Assuntos
Ciclo do Nitrogênio , Nitrogênio/química , Poaceae/fisiologia , Árvores/fisiologia , Ecossistema , Retroalimentação , Pradaria , Chuva , Estações do Ano , Solo/química , África do Sul
9.
Ecology ; 94(5): 1155-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858655

RESUMO

In this study, we explored how rainfall manipulation influenced competitive interactions between grasses and juvenile trees (small nonreproductive trees capable of resprouting) in savanna. To do this, we manipulated rainfall amount in the field using an incomplete factorial experiment that determined the effects of rainfall reduction, no manipulation, rainfall addition, and competition between grasses and trees on grass and tree growth. As response variables, we focused on several measures of tree growth and Disc Pasture Meter settling height as an estimate of grass aboveground biomass. We conducted the study over four years, at two sites in the Kruger National Park, South Africa. Our results show that rainfall manipulation did not have substantial effects on any of the measures of tree growth we considered. However, trees at plots where grasses had been removed grew on average 15 cm more in height and 1.3-1.7 times more in basal area per year than those in plots with grasses. Grass biomass was not influenced by the presence of trees but was significantly and positively influenced by rainfall addition. These findings were not fundamentally influenced by soil type or by prevailing precipitation, suggesting applicability of our results to a wide range of savannas. Our results suggest that, in savannas, increasing rainfall serves to increase the competitive pressure exerted by grasses on trees. The implication is that recruitment into the adult tree stage from the juvenile stage is most likely in drought years when there is little competition from grass for resources and grass fuel loads are low.


Assuntos
Ecossistema , Poaceae/crescimento & desenvolvimento , Chuva , Árvores/crescimento & desenvolvimento , Animais , Biomassa , Poaceae/classificação , Solo , África do Sul , Fatores de Tempo , Árvores/classificação
10.
New Phytol ; 188(1): 199-209, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20561202

RESUMO

• As described in the two-layer hypothesis, woody plants are often assumed to use deep soils to avoid competition with grasses. Yet the direct measurements of root activity needed to test this hypothesis are rare. • Here, we injected deuterated water into four soil depths, at four times of year, to measure the vertical and horizontal location of water uptake by trees and grasses in a mesic savanna in Kruger National Park, South Africa. • Trees absorbed 24, 59, 14 and 4% of tracer from the 5, 20, 50, and 120 cm depths, respectively, while grasses absorbed 61, 29, 9 and 0.3% of tracer from the same depths. Only 44% of root mass was in the top 20 cm. Trees absorbed tracer under and beyond their crowns, while 98% of tracer absorbed by grasses came from directly under the stem. • Trees and grasses partitioned soil resources (20 vs 5 cm), but this partitioning did not reflect, as suggested by the two-layer hypothesis, the ability of trees to access deep soil water that was unavailable to grasses. Because root mass was a poor indicator of root activity, our results highlight the importance of precise root activity measurements.


Assuntos
Óxido de Deutério/metabolismo , Ecossistema , Marcação por Isótopo/métodos , Poaceae/metabolismo , Árvores/metabolismo , Clima Tropical , Água/metabolismo , Biomassa , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Chuva , Solo , África do Sul , Fatores de Tempo , Árvores/anatomia & histologia
11.
Oecologia ; 162(4): 1027-34, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20213154

RESUMO

When tropical and sub-tropical ecosystems burn, considerable amounts of N present in the biomass fuel may be released. This ultimately results in a loss of fixed N to the atmosphere. It is often assumed that this volatilization loss of N with frequent fire will result in a reduction of plant-available N and total system N. By changing the amount of woody biomass fire may, however, also have indirect effects on N and C dynamics. Here we consider the effects of 50 years of frequent fire on total soil N and soil organic C (SOC) and total soil N in a mesic savanna in the Kruger National Park, South Africa. We also determine how changes in woody biomass may affect total soil N and SOC. We measured soil and fine root N and C concentrations as well as total soil N and SOC pools in four burning treatments, including fire exclusion, of a long-term fire experiment. Our results show that regardless of soil depth, fire treatment had no significant effect on total soil N and SOC. Our results also show that under trees total soil N and SOC concentrations of the surface soil increase, and pools of N and SOC increase to a depth of 7 cm. However, the extent to which soil N and C dynamics differed under canopies and away from canopies was dependent on fire treatment. Our results show that the effect of fire on soil N and C is mediated both through the indirect effect of changes in woody cover and the direct effects of fire (volatilization losses of nutrients). We suggest that woody thickening in this mesic savanna will have pronounced effects on long-term N and C dynamics.


Assuntos
Carbono/metabolismo , Ecossistema , Incêndios , Nitrogênio/metabolismo , Solo/análise , Árvores/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento , Isótopos de Carbono , Isótopos de Nitrogênio , Chuva , Estações do Ano , Microbiologia do Solo , África do Sul , Fatores de Tempo , Árvores/metabolismo , Volatilização , Madeira/metabolismo
12.
Ecology ; 88(5): 1119-25, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17536398

RESUMO

The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.


Assuntos
Carbono/metabolismo , Ecossistema , Incêndios , Poaceae/crescimento & desenvolvimento , Árvores/fisiologia , Biomassa , Conservação dos Recursos Naturais , Dinâmica Populacional , Distribuição Aleatória , Estações do Ano
13.
Nature ; 438(7069): 846-9, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16341012

RESUMO

Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than approximately 650 mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered 'stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of approximately 650 mm, savannas are 'unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation may considerably affect their distribution and dynamics.


Assuntos
Ecossistema , Chuva , Árvores/fisiologia , África , Animais , Biomassa , Clima Desértico , Poaceae/fisiologia , Solo/análise , Madeira
14.
Oecologia ; 136(2): 205-12, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12728309

RESUMO

Annual or biannual time courses of plant delta13C (delta13C(p)) over the last century (70-100 years) were recorded for leafbases of four grasstrees (Xanthorrhoea preissii) at four sites in mediterranean Australia and wood of four conifers (Widdringtonia cedarbergensis) at two sites in mediterranean South Africa. There was a strong downward trend of 2-5.5(per thousand ) from 1935 to 1940 to the present in the eight plants. Trends were more variable from 1900 to 1940 with plants at two sites of each species showing an upward trend of 1-2.5 per thousand. Accepting that delta13C of the air (delta13C(a)) fell by almost 2 per thousand over the last century, the ratio of leaf intercellular CO2 to atmospheric CO2 (c(i)/c(a)) rose in five plants and remained unchanged in three over that period. Changes in c(i)/c(a) rather than delta13C(a) were more closely correlated with changes in delta13C(p) and accounted for 6.7-71.8% (22.6 c(i)/c(a)) and 28.2-93.3% (delta13C(a)) of the variation in delta13C(p). We doubt that possible changing patterns of rainfall, water availability, temperature, shade, air pollution or clearing for agriculture have contributed to the overall trend for c(i)/c(a) to rise over time. Instead, we provide evidence (concentrations of Fe and Mn in the grasstree leafbases) that decreasing photosynthetic capacity associated with falling nutrient availability due to the reduced occurrence of fire may have contributed to rising c(i)/c(a). Intrinsic water-use efficiency (W(i)) as a function of (c(a)-c(i)) usually increased linearly over the period, with the two exceptions explained by their marked increase in c(i)/c(a). We conclude that grasstrees may provide equivalent delta13C(p )and W(i) data to long-lived conifers and that their interpretation requires a consideration of the causes of variation in both c(i)/c(a )and delta13C(a).


Assuntos
Magnoliopsida/fisiologia , Fotossíntese/fisiologia , Traqueófitas/fisiologia , Austrália , Dióxido de Carbono/análise , Isótopos de Carbono/análise , Chuva , África do Sul , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...