Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 252: 126215, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572806

RESUMO

Hereunder, for the first time, we reported phytocompounds in the methanolic extract of Acacia modesta (AM) gum through Gas chromatography-mass spectrometry (GS-MS). Further, the AM gum aqueous solution was used for gold nanoparticles (AuNPs) synthesis through a simple, swift, eco-friendly, and less costly green synthesis approach. A total of 108 phytocompounds (63 with nonpolar, 45 with polar column) were identified in the gum extract, which includes fatty acids, alcohols, sterols, aldehyde/ketones, furans, aromatic compounds, esters, phenols, terpenes, sugar derivatives, alkaloids, and flavones. From three used concentrations (5, 10, and 15 mg/mL) of the AM gum aqueous solution, the 15 mg/mL gum solution resulted in more successful AuNP synthesis with a smaller size, which was visualized by a rusty red color appearance. UV-Visible absorption spectroscopy revealed the characteristic surface plasmon resonance (SPR) of AuNPs in aqueous solution at 540 nm. Dynamic light scattering (DLS) measurement of NPs solution revealed a hydrodynamic diameter of 162 ± 02 nm with the highest gum concentration where core AuNPs diameter was 22 ± 03 nm, recorded by Transmission electron microscopy. Zeta potential revealed fair stability of AuNPs that was not decreased with time. Catalytic activity experiments revealed that AM gum-based AuNPs can increase the rate of the reduction of methylene blue 10 times in comparison with AM gum extract alone. Results from this study showed that a diverse array of phytocompounds in AM gum can successfully reduce gold ions into gold nanoparticles, which can be used further in different pharmaceutical and industrial applications.


Assuntos
Acacia , Nanopartículas Metálicas , Ouro , Metanol , Cromatografia Gasosa-Espectrometria de Massas , Nanopartículas Metálicas/química , Química Verde/métodos , Extratos Vegetais/química
2.
J Mater Chem B ; 8(34): 7723-7732, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32725026

RESUMO

Computed tomography (CT) is one of the most widespread imaging techniques in clinical use worldwide. CT contrast agents are administered to improve soft tissue contrast and highlight blood vessels. However, the range of CT contrast agents available in the clinic is limited and they suffer from short-circulation times and low k-edge values that result in the need for high doses for in vivo applications. Nanomaterials containing a mixture of electron-dense elements, such as BaYbF5 nanoparticles, have shown promise as more efficient CT contrast agents, but they require biocompatible coatings for biomedical applications. Here, we explore the use of a bifunctional PEG polymer (5 kDa) containing a terminal bisphosphonate (BP) anchor for efficient binding to the surface of BaYbF5 nanomaterials. The resulting PEG(5)-BP-BaYbF5 nanoparticles were synthesized and characterized using TEM, DLS, TGA, XRD and Z-potential measurements. Their in vitro stability was verified and their ability to produce CT contrast in a wide range of X-ray energies, covering preclinical and clinical scanners, was demonstrated. In vitro toxicity studies with PEG(5)-BP-BaYbF5 in the phagocytic pro-monocytic human cell line U937 did not identify toxic effects, even at high concentrations (30 mM). In vivo, PEG(5)-BP-BaYbF5 exhibited efficient CT contrast for angiography imaging, highlighting blood vessels and vascular organs, and long circulation times as expected from the PEG coating. However, at late time points (48 h), in vivo toxicity was observed. While the causes could not be completely elucidated, in vitro studies suggest that decomposition and release of Yb3+ and/or Ba2+ metal ions after decomposition of PEG(5)-BP-BaYbF5 may play a role. Overall, despite the promising CT contrast properties, our results suggest that BaYbF5 nanomaterials may suffer from significant long-term toxicities.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Difosfonatos/química , Nanopartículas/química , Polietilenoglicóis/química , Tomografia Computadorizada por Raios X/métodos , Materiais Biocompatíveis/síntese química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA