Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-463699

RESUMO

BackgroundInformation concerning the longevity of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in convalescent coronavirus disease-2019 (COVID-19) patients up to 15 months after symptoms onset. MethodsThe levels of anti-spike and anti-receptor binding domain antibodies and neutralizing activities were tested in a total of 188 samples from 136 convalescent patients who experience mild to critical COVID-19. Specific memory B and T cell responses were measured in 76 peripheral blood mononuclear cell samples collected from 54 patients. Twenty-three vaccinated individuals were included for comparison. FindingsFollowing a peak at day 15-28 post-infection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Plasma neutralizing activity against G614 was still detected in 87% of the patients at 6-15 months. Compared to G614, the median neutralizing titers against Beta, Gamma and Delta variants in plasma collected at early (15-103 days) and late (9-15 month) convalescence were 16- and 8-fold lower, respectively. SARS-CoV-2-specific memory B and T cells reached a peak at 3-6 months and persisted in the majority of patients up to 15 months although a significant decrease in specific T cells was observed between 6 and 15 months. ConclusionThe data suggest that antiviral specific immunity especially memory B cells in COVID-19 convalescent patients is long-lasting, but some variants of concern, including the fast-spreading Delta variant, may at least partially escape the neutralizing activity of plasma antibodies. FundingEU-ATAC consortium, the Italian Ministry of Health, the Swedish Research Council, SciLifeLab, and KAW.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259500

RESUMO

Vaccine breakthrough SARS-CoV-2 infection has been monitored in 3720 healthcare workers receiving 2 doses of BNT162b2. SARS-CoV-2 infection is detected in 33 subjects, with a 100-day cumulative incidence of 0.93%. Vaccine protection against acquisition of SARS-CoV-2 infection is 83% (95%CI: 58-93%) in the overall population and 93% (95%CI: 69-99%) in SARS-CoV-2-experienced subjects, when compared with a non-vaccinated control group from the same Institution, in which SARS-CoV-2 infection occurs in 20/346 subjects (100-day cumulative incidence: 5.78%). The infection is symptomatic in 16 (48%) vaccinated subjects vs 17 (85%) controls (p=0.001). All analyzed patients, in whom the amount of viral RNA was sufficient for genome sequencing, results infected by the alpha variant. Antibody and T-cell responses are not reduced in subjects with breakthrough infection. Evidence of virus transmission, determined by contact tracing, is observed in two (6.1%) cases. This real-world data support the protective effect of BNT162b2 vaccine. A triple antigenic exposure, such as two-dose vaccine schedule in experienced subjects, may confer a higher protection.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-371617

RESUMO

BackgroundThe longevity of the immune response against SARS-CoV-2 is currently debated. We thus profiled the serum anti-SARS-CoV-2 antibody levels and virus specific memory B- and T-cell responses over time in convalescent COVID-19 patients. MethodsA cohort of COVID-19 patients from the Lombardy region in Italy who experienced mild to critical disease and Swedish volunteers with mild symptoms, were tested for the presence of elevated anti-spike and anti-receptor binding domain antibody levels over a period of eight months. In addition, specific memory B- and T-cell responses were tested in selected patient samples. ResultsAnti-SARS-CoV-2 antibodies were present in 85% samples collected within 4 weeks after onset of symptoms in COVID-19 patients. Levels of specific IgM or IgA antibodies declined after 1 month while levels of specific IgG antibodies remained stable up to 6 months after diagnosis. Anti-SARS-CoV-2 IgG antibodies were still present, though at a significantly lower level, in 80% samples collected at 6-8 months after symptom onset. SARS-CoV-2-specific memory B- and T-cell responses were developed in vast majority of the patients tested, regardless of disease severity, and remained detectable up to 6-8 months after infection. ConclusionsAlthough the serum levels of anti-SARS-CoV-2 IgG antibodies started to decline, virus-specific T and/or memory B cell responses increased with time and maintained during the study period (6-8 months after infection). FundingEuropean Unions Horizon 2020 research and innovation programme (ATAC), the Italian Ministry of Health, CIMED, the Swedish Research Council and the China Scholarship Council.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...