Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475537

RESUMO

Rapid advancements in technologies provide various tools to analyze fruit crop genomes to better understand genetic diversity and relationships and aid in breeding. Genome-wide single nucleotide polymorphism (SNP) genotyping arrays offer highly multiplexed assays at a relatively low cost per data point. We report the development and validation of 1.4M SNP Axiom® Citrus HD Genotyping Array (Citrus 15AX 1 and Citrus 15AX 2) and 58K SNP Axiom® Citrus Genotyping Arrays for Citrus and close relatives. SNPs represented were chosen from a citrus variant discovery panel consisting of 41 diverse whole-genome re-sequenced accessions of Citrus and close relatives, including eight progenitor citrus species. SNPs chosen mainly target putative genic regions of the genome and are accurately called in both Citrus and its closely related genera while providing good coverage of the nuclear and chloroplast genomes. Reproducibility of the arrays was nearly 100%, with a large majority of the SNPs classified as the most stringent class of markers, "PolyHighResolution" (PHR) polymorphisms. Concordance between SNP calls in sequence data and array data average 98%. Phylogenies generated with array data were similar to those with comparable sequence data and little affected by 3 to 5% genotyping error. Both arrays are publicly available.

2.
Nat Commun ; 10(1): 744, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808865

RESUMO

The sour taste of Citrus fruits is due to the extreme acidification of vacuoles in juice vesicle cells via a mechanism that remained elusive. Genetic analysis in petunia identified two vacuolar P-ATPases, PH1 and PH5, which determine flower color by hyperacidifying petal cell vacuoles. Here we show that Citrus homologs, CitPH1 and CitPH5, are expressed in sour lemon, orange, pummelo and rangpur lime fruits, while their expression is strongly reduced in sweet-tasting "acidless" varieties. Down-regulation of CitPH1 and CitPH5 is associated with mutations that disrupt expression of MYB, HLH and/or WRKY transcription factors homologous to those activating PH1 and PH5 in petunia. These findings address a long-standing enigma in cell biology and provide targets to engineer or select for taste in Citrus and other fruits.


Assuntos
Citrus/genética , Frutas/genética , Proteínas de Plantas/genética , ATPases Vacuolares Próton-Translocadoras/genética , Vacúolos/enzimologia , Citrus/metabolismo , Frutas/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , ATPases Vacuolares Próton-Translocadoras/classificação , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/química
3.
BMC Plant Biol ; 13: 129, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020638

RESUMO

BACKGROUND: Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv. Nules, designated ESP, FRA, and ITA (derived from three labs in Spain, France, and Italy, respectively), were selected for cytological and molecular characterization in order to elucidate genomic rearrangements provoked by haploidization. The study included comparisons of their ploidy, homozygosity, genome integrity, and gene dosage, using chromosome counting, flow cytometry, SSR marker genotyping, and array-Comparative Genomic Hybridization (array-CGH). RESULTS: Chromosome counting and flow cytometry revealed that ESP and FRA were haploid, but ITA was tri-haploid. Homozygous patterns, represented by a single peak (allele), were observed among the three plants at almost all SSR loci distributed across the entire diploid donor genome. Those few loci with extra peaks visualized as output from automated sequencing runs, generally low or ambiguous, might result from amplicons of paralogous members at the locus, non-specific sites, or unexpected recombinant alleles. No new alleles were found, suggesting the genomes remained stable and intact during gametogenesis and regeneration. The integrity of the haploid genome also was supported by array-CGH studies, in which genomic profiles were comparable to the diploid control. CONCLUSIONS: The presence of few gene hybridization abnormalities, corroborated by gene dosage measurements, were hypothetically due to the segregation of hemizygous alleles and minor genomic rearrangements occurring during the haploidization procedure. In conclusion, these plants that are valuable genetic and breeding materials contain completely homozygous and essentially intact genomes.


Assuntos
Citrus/genética , Genoma de Planta/genética , Alelos , Haploidia , Homozigoto
4.
BMC Genomics ; 13: 593, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23126659

RESUMO

BACKGROUND: Most modern citrus cultivars have an interspecific origin. As a foundational step towards deciphering the interspecific genome structures, a reference whole genome sequence was produced by the International Citrus Genome Consortium from a haploid derived from Clementine mandarin. The availability of a saturated genetic map of Clementine was identified as an essential prerequisite to assist the whole genome sequence assembly. Clementine is believed to be a 'Mediterranean' mandarin × sweet orange hybrid, and sweet orange likely arose from interspecific hybridizations between mandarin and pummelo gene pools. The primary goals of the present study were to establish a Clementine reference map using codominant markers, and to perform comparative mapping of pummelo, sweet orange, and Clementine. RESULTS: Five parental genetic maps were established from three segregating populations, which were genotyped with Single Nucleotide Polymorphism (SNP), Simple Sequence Repeats (SSR) and Insertion-Deletion (Indel) markers. An initial medium density reference map (961 markers for 1084.1 cM) of the Clementine was established by combining male and female Clementine segregation data. This Clementine map was compared with two pummelo maps and a sweet orange map. The linear order of markers was highly conserved in the different species. However, significant differences in map size were observed, which suggests a variation in the recombination rates. Skewed segregations were much higher in the male than female Clementine mapping data. The mapping data confirmed that Clementine arose from hybridization between 'Mediterranean' mandarin and sweet orange. The results identified nine recombination break points for the sweet orange gamete that contributed to the Clementine genome. CONCLUSIONS: A reference genetic map of citrus, used to facilitate the chromosome assembly of the first citrus reference genome sequence, was established. The high conservation of marker order observed at the interspecific level should allow reasonable inferences of most citrus genome sequences by mapping next-generation sequencing (NGS) data in the reference genome sequence. The genome of the haploid Clementine used to establish the citrus reference genome sequence appears to have been inherited primarily from the 'Mediterranean' mandarin. The high frequency of skewed allelic segregations in the male Clementine data underline the probable extent of deviation from Mendelian segregation for characters controlled by heterozygous loci in male parents.


Assuntos
Mapeamento Cromossômico , Citrus/genética , Evolução Molecular , Hibridização Genética , Cruzamento/métodos , Marcadores Genéticos , Genótipo , Haplótipos/genética , Escore Lod , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
5.
Theor Appl Genet ; 112(8): 1519-31, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16699791

RESUMO

Twenty-four simple sequence repeat (SSR) markers were used to detect molecular polymorphisms among 370 mostly sexually derived Citrus accessions from the collection of citrus germplasm maintained at the University of California, Riverside. A total of 275 alleles were detected with an average of 11.5 alleles per locus and an average polymorphism information content of 0.625. Genetic diversity statistics were calculated for each individual SSR marker, the entire population, and for specified Citrus groups. Phylogenetic relationships among all citrus accessions and putative non-hybrid Citrus accessions were determined by constructing neighbor-joining trees. There was strong support for monophyly at the species level when hybrid taxa were removed from the data set. Both of these trees indicate that Fortunella clusters within the genus Citrus but Poncirus is a sister genus to Citrus. Additionally, Citrus accessions were probabilistically assigned to populations or multiple populations if their genotype indicated an admixture by a model-based clustering approach. This approach identified five populations in this data set. These separate analyses (distance and model based) both support the hypothesis that there are only a few naturally occurring species of Citrus and most other types of Citrus arose through various hybridization events between these naturally occurring forms.


Assuntos
Citrus/genética , Variação Genética , Repetições de Microssatélites , Alelos , Teorema de Bayes , Mapeamento Cromossômico , Cromossomos de Plantas , Citrus/classificação , Análise por Conglomerados , DNA de Plantas/genética , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Heterozigoto , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...