Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 437: 28-35, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27883907

RESUMO

Changes in concentration (0.001-0.1 M) of an arabinofuranosyl donor (1) have been shown to modulate the temperature T at which activation of 1 occurs (from -23 °C to +7 °C), the reaction time (from 1.5 h to 3 days) and the yield of the disaccharide formed (from 14% to 82%). At concentrations exceeding 0.01 M, these parameters, as well as the specific optical rotation of the solution of 1, virtually do not depend on concentration suggesting formation of reacting species (supramers) of glycosyl donor with similar structures, hence reactivities, but considerably different from those formed in more dilute solutions. The found critical concentration (0.01 M) separates two concentration ranges of reaction solutions corresponding to two types of solution structure that are featured by the presence of fundamentally different supramers of glycosyl donor, which have distinct chemical properties. These results allow a fresh look at the problems of reactivity of chemical compounds and selectivity of the reactions in which they participate.


Assuntos
Arabinose/análogos & derivados , Bioquímica de Carboidratos/métodos , Glicosilação , Arabinose/química , Configuração de Carboidratos , Dissacarídeos/química , Soluções , Temperatura
2.
Carbohydr Res ; 396: 25-36, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25079596

RESUMO

The influence of O-trifluoroacetyl (TFA) groups at different positions of thioglycoside glycosyl donors on stereoselectivity of α-arabinofuranosylation leading to corresponding disaccharides was studied. It was shown that TFA group in thioglycoside glycosyl donors, when combined with 2-O-(triisopropylsilyl) (TIPS) non-participating group, may be regarded as an electron-withdrawing protecting group that may enhance 1,2-cis-selectivity in arabinofuranosylation, the results strongly depending on the nature of glycosyl acceptor. The reactivities of the glycosyl donors were compared with those of a similar thioglycoside with O-pentafluoropropionyl groups and the known phenyl 3,5-O-(di-tert-butylsilylene)-1-thio-α-d-arabinofuranosides with 2-O-TIPS and 2-O-benzyl groups. The 'matching' in the donor-acceptor combination was found to be critical for achieving both high reactivity of glycosyl donor and ß-stereoselectivity of arabinofuranosylation. The use of glycosyl donors with TFA and silyl protection may be useful in the realization of the benzyl-free approach to oligoarabinofuranosides with azido group in aglycon-convenient building blocks for the preparation of neoglycoconjugates.


Assuntos
Arabinose/análogos & derivados , Dissacarídeos/síntese química , Fluoracetatos/química , Arabinose/química , Glicosilação , Estereoisomerismo
4.
Carbohydr Res ; 346(1): 7-15, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21109236

RESUMO

ß-d-Arabinofuranose 1,2,5-orthobenzoates with 3-O-acetyl, 3-O-benzoyl, and 3-O-chloroacetyl groups were prepared in an efficient manner starting from readily available crystalline methyl 2,3,5-tri-O-benzoyl-α-d-arabinofuranoside, and ring-opening reactions of these compounds with O- and S-nucleophiles were studied. Optimized conditions leading to the formation of the respective monosaccharide adducts (up to 96% isolated yields) and to α-(1→5)-linked disaccharide thioglycosides with 5'-OH unprotected (up to 30% isolated yields) were found. Basing on these results, a novel approach for effective differentiation of 3,5-diol system and 2-hydroxy group in arabinofuranose thioglycosides was proposed. The selectively protected derivatives prepared are valuable building blocks for the assembly of linear and branched oligoarabinofuranosides.


Assuntos
Arabinose/análogos & derivados , Benzoatos/química , Tioglicosídeos/química , Arabinose/química , Sequência de Carboidratos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...