Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(34): 22900-22912, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37591807

RESUMO

A high-quality Ag3SbS3 single crystal was grown by the Bridgman-Stockbarger method and its crystalline structure and homogeneity were investigated. The fundamental absorption edge of Ag3SbS3 was studied. The value of the band gap of the studied compound was obtained at the level of 1.91 eV at T = 300 K. The structural, electronic, and optical properties of the Ag3SbS3 crystal were considered within the framework of first-principles calculations using density functional theory (DFT). The structure of the crystal lattice was optimized and its closeness to the experimental one is shown. The band-energy structure of the crystal was calculated revealing that the crystal has a band gap of indirect type with Eg = 0.88 eV for GGA (0.35 eV for LDA). The origin of the energy bands in the crystal was clarified and the nature of the fundamental absorption edge was analyzed using the calculated density of electronic states. The dielectric function (real part ε1(ω) and imaginary part ε2(ω)) and absorption coefficient α(ω) were calculated for two independent directions in the crystal and compared with experimental data. The character and anisotropy of optical functions are analyzed. The high value of the absorption coefficient of the Ag3SbS3 crystal is shown, which makes it a promising material for use as an absorbing layer in photovoltaics.

2.
Mater Adv ; 3(9): 4006-4014, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35663247

RESUMO

Developing X-ray and γ-ray detectors with stable operation at ambient temperature and high energy resolution is an open challenge. Here, we present an approach to search for new detector materials, combining binary photodetector compounds. More specifically, we explore quaternary TlPb2Br5-x I x compositions, relying on materials synergy between TlBr, TlI, and PbI2 photodetectors. We discover a broad solid solution in the TlPb2Br5-'TlPb2I5' section, which can be derived from a new quaternary compound, TlPb2BrI4, by partial substitution of Br by I atoms on the 4c site or by replacement of I by Br atoms on the 16l site. We carry out a thorough crystallographic analysis of the new TlPb2BrI4 compound and prepare a high-quality standardized structure file. We also complete the phase diagram of the TlPb2Br5-'TlPb2I5' section, based on 21 alloys. Furthermore, we synthesize a series of high quality centimeter-sized TlPb2Br5-x I x single crystals (x = 2, 2.5, 3, 3.5, 4, 4.5) by the Bridgman-Stockbarger method and study their structure and properties using a combination of experimental techniques (X-ray diffraction, X-ray photoelectron spectroscopy, and absorption spectroscopy) and theoretical calculations.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 146: 187-91, 2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-25813175

RESUMO

The optimized conditions for the enhancement of the second harmonic generation in the composites of the orthorhombic δ-BiB3O6:Pr(3+) nanoparticles embedded in polyvinyl alcohol films and deposited on the AgGaGe2Se6, AgGaGe2.7Si0.3Se8 (90 mol.% AgGaGe3Se8 - 10 mol.% AgGaSi3Se8), and AgGaGe3Se8:Cu substrates were established. The highest second-order susceptibility was achieved during the Ag-Ga-Ge-Se crystalline substrates photo-illumination by nanosecond laser pulses of about 2900 nm wavelength. The effect was found to be completely reversible after the interruption of the photo-inducing stimulation. Complementary studies of Atomic Force Microscopy, AFM, X-ray Diffraction, XRD, and Fourier-Transform Infrared Spectroscopy, and DFT simulations of spectral dependences of the corresponding second-order nonlinear optical susceptibilities, were performed.


Assuntos
Bismuto/química , Boratos/química , Nanocompostos/química , Calcogênios/química , Microscopia de Força Atômica , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Phys Chem Chem Phys ; 16(25): 12838-47, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24845392

RESUMO

A novel Tl3PbI5 crystal has been studied both experimentally and theoretically. Complex measurements of the X-ray photoelectron core-level and valence-band spectra for the pristine and Ar(+)-ion irradiated surfaces of a Tl3PbI5 single crystal grown by the Bridgman-Stockbarger method were performed in order to clarify their principal properties (charge carriers mobility, effective inter-band distances, effective absorption etc.) relevant for optoelectronic applications. The principal role of two heavy cations - Tl and Pb - is explored. The X-ray photoelectron spectroscopy results reveal a high chemical stability of the Tl3PbI5 single crystal surface which makes it very promising for technological applications. Theoretical band-structure calculations for the Tl3PbI5 compound reveal that the I 5p states dominate in the top of the valence band and play a crucial role in the formation of the optical features and charge carrier mobility. The bottom of the Tl3PbI5 valence band is formed mainly by the admixture of Tl 6s and Pb 6s states, while the unoccupied Pb 6p and Tl 6p states dominate at the bottom of the conduction band. The band energy dispersion related to effective masses and the charge carrier mobility is studied in detail. Crucially, the theoretical calculations reveal an indirect band gap for Tl3PbI5, which indicates a strong influence of the electron-phonon interaction on the observed optoelectronic features. The temperature measurements of the fundamental absorption have shown that the band energy gap of Tl3PbI5 increases from 2.29 to 2.39 eV when the temperature changes from 300 to 100 K.


Assuntos
Iodo/química , Chumbo/química , Tálio/química , Cristalização , Estrutura Molecular , Espectroscopia Fotoeletrônica
5.
J Phys Chem B ; 117(48): 15220-31, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24219563

RESUMO

Theoretical and experimental studies of the Ag(x)Ga(x)Ge(1-x)Se2 (x = 0.333, 0.250, 0.200, 0.167) single crystals are performed. These crystals possess a lot of intrinsic defects which are responsible for their optoelectronic features. The theoretical investigations were performed by means of DFT calculations using different exchange-correlation potentials. The experimental studies were carried out using the modulated VUV ellipsometry for dielectric constants and birefringence studies. The comparison of the structure obtained from X-ray with the theoretically optimized structure is presented. The crucial role of the intrinsic defect states is manifested in the choice of the exchange correlation potential used. The data may be applicable for a large number of the ternary chalcogenides which are sensitive to the presence of the local disordered states near the band edges.


Assuntos
Gálio/química , Germânio/química , Teoria Quântica , Selênio/química , Prata/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta
6.
Phys Chem Chem Phys ; 15(43): 18979-86, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24097293

RESUMO

As the starting point for a comprehensive theoretical investigation of the linear and nonlinear optical susceptibilities, we have used our experimental crystallographic data for Ag0.5Pb1.75GeS3Se (Ag2Pb7Ge4S12Se4) reported. The experimental crystallographic positions were optimized by minimizing the forces acting on each atom to get meaningful theoretical predictions of the optical properties. The linear optical susceptibilities are calculated. We find that the optical band gap shows very good agreement with our measured gap. The second-order nonlinear optical (NLO) susceptibilities dispersion namely the optical second harmonic generation (SHG) is calculated and compared with our experimental measurements. The microscopic first order hyperpolarizability, ß123, vector component along the principal dipole moment directions for the χ((2))(123)(ω) component was obtained theoretically and compared with our measured values at different temperatures. The dependence of the two-photon absorption (TPA) for the pump-probing at SHG of the microsecond CO2 laser was measured. In addition we explored the linear electro-optical effect in these crystals. This effect is described by the third rank polar tensors similarly to the SHG. However, for the Pockels effect besides the electronic contribution, the phonon subsystem also begins to play a principal role. As a consequence we study the dispersion of the linear electro-optical effects in the mentioned crystals.


Assuntos
Ligas/química , Modelos Químicos , Ligas/síntese química , Cristalografia por Raios X , Conformação Molecular , Fótons , Temperatura
7.
Artigo em Inglês | MEDLINE | ID: mdl-23973592

RESUMO

The novel crystalline alloys CdTe-CuInTe2 were synthesized. The photoinduced spectral changes of the anharmonic phonon modes were explored by cw CO2 laser at power about 2 kW in the vicinity of the 1650 cm(-1) mode. The changes of the intensities for principal phonon modes were found. These modes were assigned both to harmonic as well as anharmonic modes. All the measurements are studied after the Ir illumination. The performed quantum chemical calculations with application of the norm-conserving pseudopotential method and Green functions allow to identify the origin of the content dependent anharmonic phonon modes. Some correlation between the intensities of the corresponding phonon modes at about 1600-1700 cm(-1) and the corresponding IR induced changes were found.


Assuntos
Ligas/química , Compostos de Cádmio/química , Cobre/química , Índio/química , Telúrio/química , Cristalização , Modelos Moleculares , Fônons , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Phys Chem Chem Phys ; 15(18): 6965-72, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23552559

RESUMO

Photoelectrical properties of Tl1-xIn1-xSnxSe2 single crystalline alloys (x = 0, 0.1, 0.2, 0.25) grown using the Bridgman-Stockbarger method were studied. The temperature dependence of electrical and photoconductivity for the Tl1-xIn1-xSnxSe2 single crystals was explored. It has been established that photosensitivity of the Tl1-xIn1-xSnxSe2 single crystals increases with x. The spectral distribution of photocurrent in the wavelength spectral range 400-1000 nm has been investigated at various temperatures. Photoconductivity increases in all the studied crystals with temperature. Therefore, thermal activation of photoconductivity is caused by re-charging of the photoactive centers as the samples are heated. Based on our investigations, a model of center re-charging is proposed that explains the observed phenomena. X-ray photoelectron valence-band spectra for pristine and Ar(+)-ion irradiated surfaces of the Tl1-xIn1-xSnxSe2 single crystals have been measured. These results reveal that the Tl1-xIn1-xSnxSe2 single-crystal surface is sensitive to the Ar(+) ion irradiation that induced structural modification in the top surface layers. Comparison on a common energy scale of the X-ray emission Se Kß2 bands representing energy distribution of the Se 4p-like states and the X-ray photoelectron valence-band spectra was done.


Assuntos
Ligas/química , Índio/química , Selênio/química , Tálio/química , Estanho/química , Cristalização , Elétrons , Espectroscopia Fotoeletrônica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...