Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(50): 46564-46572, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570249

RESUMO

A facile synthesis method was developed to synthesize TiO2-SiO2-P2O5/CaO or TiO2-SiO2-P2O5/ZnO with a core-shell structure. The carboxylic cation exchanger Tokem-250 has a high selectivity for Ca2+/Zn2+ ions and was used in this study. The framework of the material in the shell was TiO2-SiO2-P2O5, and the inner part was filled with CaO (sample TiO2-SiO2/CaO) or ZnO (sample TiO2-SiO2-P2O5/ZnO). A stepwise heat treatment (drying in a drying oven at 60 °C for 30 min, then annealing in a muffle furnace for 30 min at 150, 250, and 350 °C, at 600 °C for 6 h, and at 800 °C for 1 h) was needed to obtain a homogeneous material. The poly(vinyl alcohol) was used as a binding additive. The obtained composites were characterized by a regular structure and highly developed surface. The samples exhibit bioactive properties in the simulated body fluid (SBF) solution, since the surface contains active centers (Si4+, Ti4+) which contribute to mineralization and precipitation of the calcium-phosphate compounds on the surface from biological media. The TiO2-SiO2-P2O5/CaO-PVA samples did not exceed acceptable hemolysis levels for medical materials.

2.
J Funct Biomater ; 12(1)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807513

RESUMO

The application of various materials in biomedical procedures has recently experienced rapid growth. One of the areas is the treatment of many of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. We have developed a material based on cryogel polyvinyl alcohol, mineralized with calcium phosphate. Composites were obtained by cyclic freezing-thawing, the synthesis of calcium phosphates was carried out in situ under the influence of microwave radiation with heating and stirring. The components of the composites were determined using the methods of IR-spectroscopy and scanning electron microscopy and electron probe microanalyzer, as well as their morphology and surface properties. The biological compatibility of the material was investigated in vivo for a Wistar rat. The assessment of the quality of bone formation between the cryogel-based implant and the damaged bone was carried out by computed tomography. An improvement in the consolidation of the bone defect is observed in the bone with the composite in comparison with the control bone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA