Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 179: 44-57, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35306329

RESUMO

Reduction in the greenhouse gas (GHG) emissions and nitrogen (N) pollution of ground water by improving nitrogen use efficiency (NUE) in crops has become an intensively investigated research topic in pursuit of a more sustainable future. Although, distinct solutions have been proposed there are only a few reports documenting the detailed interplay between observed plant growth dynamics and changes in plant N related transcriptional and biochemical changes. It was previously demonstrated that the application of a formulated biostimulant (PSI-362) derived from Ascophyllum nodosum (ANE) improves N uptake in Arabidopsis thaliana and in barley. In this study, the effect of PSI-362 on the growth dynamics of wheat seedlings was evaluated at different biostimulant and N supplementation rates. Wheat grown on N deficient MS medium was also analysed from the first hour of the treatment until the depletion of the nutrients in the medium 9 days later. During this time the biomass increase measured for PSI-362 treated plants versus untreated controls was associated with increased nitrate uptake, with surplus N assimilated by the biomass in the form of glutamate, glutamine, free amino acids, soluble proteins, and chlorophyll. Phenotypical and biochemical analysis were supported by evaluation of differential expression of genetic markers involved in nitrate perception and transport (TaNRT1.1/NPF6.3), nitrate and nitrite reduction (TaNR1 and TaNiR1) and assimilation (TaGDH2, TaGoGAT, TaGS1). Finally, a comparative analysis of the precision biostimulant PSI-362 and two generic ANEs demonstrated that the NUE effect greatly differs depending on the ANE formulation used.


Assuntos
Arabidopsis , Ascophyllum , Arabidopsis/genética , Ascophyllum/química , Nitrogênio/metabolismo , Plântula/metabolismo , Triticum/metabolismo
2.
Front Plant Sci ; 12: 664682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025702

RESUMO

Intensive agricultural production utilizes large amounts of nitrogen (N) mineral fertilizers that are applied to the soil to secure high crop yields. Unfortunately, up to 65% of this N fertilizer is not taken up by crops and is lost to the environment. To compensate these issues, growers usually apply more fertilizer than crops actually need, contributing significantly to N pollution and to GHG emissions. In order to combat the need for such large N inputs, a better understanding of nitrogen use efficiency (NUE) and agronomic solutions that increase NUE within crops is required. The application of biostimulants derived from extracts of the brown seaweed Ascophyllum nodosum has long been accepted by growers as a sustainable crop production input. However, little is known on how Ascophyllum nodosum extracts (ANEs) can influence mechanisms of N uptake and assimilation in crops to allow reduced N application. In this work, a significant increase in nitrate accumulation in Arabidopsis thaliana 6 days after applying the novel proprietary biostimulant PSI-362 was observed. Follow-up studies in barley crops revealed that PSI-362 increases NUE by 29.85-60.26% under 75% N input in multi-year field trials. When PSI-362 was incorporated as a coating to the granular N fertilizer calcium ammonium nitrate and applied to barley crop, a coordinated stimulation of N uptake and assimilation markers was observed. A key indicator of biostimulant performance was increased nitrate content in barley shoot tissue 22 days after N fertilizer application (+17.9-72.2%), that was associated with gene upregulation of root nitrate transporters (NRT1.1, NRT2.1, and NRT1.5). Simultaneously, PSI-362 coated fertilizer enhanced nitrate reductase and glutamine synthase activities, while higher content of free amino acids, soluble protein and photosynthetic pigments was measured. These biological changes at stem elongation stage were later translated into enhanced NUE traits in harvested grain. Overall, our results support the agronomic use of this engineered ANE that allowed a reduction in N fertilizer usage while maintaining or increasing crop yield. The data suggests that it can be part of the solution for the successful implementation of mitigation policies for water quality and GHG emissions from N fertilizer usage.

3.
Sci Rep ; 9(1): 16644, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719578

RESUMO

The yield of podded crops such as oilseed rape (OSR) is limited by evolutionary adaptations of the plants for more efficient and successful seed dispersal for survival. These plants have evolved dehiscent dry fruits that shatter along a specifically developed junction at carpel margins. A number of strategies such as pod sealants, GMOs and hybrids have been developed to mitigate the impact of pod shatter on crop yield with limited success. Plant biostimulants have been shown to influence plant development. A challenge in plant biostimulant research is elucidating the mechanisms of action. Here we have focused on understanding the effect of an Ascophyllum nodosum based biostimulant (Sealicit) on fruit development and seed dispersal trait in Arabidopsis and OSR at genetic and physiological level. The results indicate that Sealicit is affecting the expression of the major regulator of pod shattering, INDEHISCENT, as well as disrupting the auxin minimum. Both factors influence the formation of the dehiscence zone and consequently reduce pod shattering. Unravelling the mode of action of this unique biostimulant provides data to support its effectiveness in reducing pod shatter and highlights its potential for growers to increase seed yield in a number of OSR varieties.


Assuntos
Ascophyllum/química , Brassica napus/efeitos dos fármacos , Produção Agrícola/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Dispersão de Sementes/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA