Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol ; 13: 16, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23587026

RESUMO

Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens' science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike.


Assuntos
Biodiversidade , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Animais , Ecossistema , Humanos , Disseminação de Informação
2.
Int J Mol Sci ; 12(5): 2769-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21686149

RESUMO

Beech forests play an important role in temperate and north Mediterranean ecosystems in Greece since they occupy infertile montane soils. In the last glacial maximum, Fagus sylvatica (beech) was confined to Southern Europe where it was dominant and in the last thousand years has expanded its range to dominate central Europe. We sampled four different beech forest types. We found 298 insect species associated with beech trees and dead beech wood. While F. sylvatica and Quercus (oak) are confamilial, there are great differences in richness of the associated entomofauna. Insect species that inhabit beech forests are less than one fifth of those species living in oak dominated forests despite the fact that beech is the most abundant central and north European tree. There is a distinct paucity of monophagous species on beech trees and most insect species are shared between co-occurring deciduous tree species and beech. This lack of species is attributed to the vegetation history and secondary plant chemistry. Bark and leaf biophenols from beech indicate that differences in plant secondary metabolites may be responsible for the differences in the richness of entomofauna in communities dominated by beech and other deciduous trees.


Assuntos
Fagus/metabolismo , Insetos/fisiologia , Fenóis/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Fagus/química , Fagus/microbiologia , Grécia , Herbivoria , Fenóis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...