Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452277

RESUMO

BACKGROUND: Biology-guided radiotherapy (BgRT) is a novel technology that uses positron emission tomography (PET) data to direct radiotherapy delivery in real-time. BgRT enables the precise delivery of radiation doses based on the PET signals emanating from PET-avid tumors on the fly. In this way, BgRT uniquely utilizes radiotracer uptake as a biological beacon for controlling and adjusting dose delivery in real-time to account for target motion. PURPOSE: To demonstrate using real-time PET for BgRT delivery on the RefleXion X1 radiotherapy machine. The X1 radiotherapy machine is a rotating ring-gantry radiotherapy system that generates a nominal 6MV photon beam, PET, and computed tomography (CT) components. The system utilizes emitted photons from PET-avid targets to deliver effective radiation beamlets or pulses to the tumor in real-time. METHODS: This study demonstrated a real-time PET BgRT delivery experiment under three scenarios. These scenarios included BgRT delivering to (S1 ) a static target in a homogeneous and heterogeneous environment, (S2 ) a static target with a hot avoidance structure and partial PET-avid target, and (S3 ) a moving target. The first step was to create stereotactic body radiotherapy (SBRT) and BgRT plans (offline PET data supported) using RefleXion's custom-built treatment planning system (TPS). Additionally, to create a BgRT plan using PET-guided delivery, the targets were filled with 18F-Fluorodeoxyglucose (FDG), which represents a tumor/target, that is, PET-avid. The background materials were created in the insert with homogeneous water medium (for S1 ) and heterogeneous water with styrofoam mesh medium. A heterogeneous background medium simulated soft tissue surrounding the tumor. The treatment plan was then delivered to the experimental setups using a pre-commercial version of the X1 machine. As a final step, the dosimetric accuracy for S1 and S2 was assessed using the ArcCheck analysis tool-the gamma criteria of 3%/3 mm. For S3 , the delivery dose was quantified using EBT-XD radiochromic film. The accuracy criteria were based on coverage, where 100% of the clinical target volume (CTV) receives at least 97% of the prescription dose, and the maximum dose in the CTV was ≤130% of the maximum planned dose (97 % ≤ CTV ≤ 130%). RESULTS: For the S1, both SBRT and BgRT deliveries had gamma pass rates greater than 95% (SBRT range: 96.9%-100%, BgRT range: 95.2%-98.9%), while in S2 , the gamma pass rate was 98% for SBRT and between 95.2% and 98.9% for BgRT plan delivering. For S3 , both SBRT and BgRT motion deliveries met CTV dose coverage requirements, with BgRT plans delivering a very high dose to the target. The CTV dose ranges were (a) SBRT:100.4%-120.4%, and (b) BgRT: 121.3%-139.9%. CONCLUSIONS: This phantom-based study demonstrated that PET signals from PET-avid tumors can be utilized to direct real-time dose delivery to the tumor accurately, which is comparable to the dosimetric accuracy of SBRT. Furthermore, BgRT delivered a PET-signal controlled dose to the moving target, equivalent to the dose distribution to the static target. A future study will compare the performance of BgRT with conventional image-guided radiotherapy.

2.
Int J Radiat Oncol Biol Phys ; 118(5): 1172-1180, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147912

RESUMO

PURPOSE: Positron emission tomography (PET)-guided radiation therapy is a novel tracked dose delivery modality that uses real-time PET to guide radiation therapy beamlets. The BIOGUIDE-X study was performed with sequential cohorts of participants to (1) identify the fluorodeoxyglucose (FDG) dose for PET-guided therapy and (2) confirm that the emulated dose distribution was consistent with a physician-approved radiation therapy plan. METHODS AND MATERIALS: This prospective study included participants with at least 1 FDG-avid targetable primary or metastatic tumor (2-5 cm) in the lung or bone. For cohort I, a modified 3 + 3 design was used to determine the FDG dose that would result in adequate signal for PET-guided therapy. For cohort II, PET imaging data were collected on the X1 system before the first and last fractions among patients undergoing conventional stereotactic body radiation therapy. PET-guided therapy dose distributions were modeled on the patient's computed tomography anatomy using the collected PET data at each fraction as input to an "emulated delivery" and compared with the physician-approved plan. RESULTS: Cohort I demonstrated adequate FDG activity in 6 of 6 evaluable participants (100.0%) with the first injected dose level of 15 mCi FDG. In cohort II, 4 patients with lung tumors and 5 with bone tumors were enrolled, and evaluable emulated delivery data points were collected for 17 treatment fractions. Sixteen of the 17 emulated deliveries resulted in dose distributions that were accurate with respect to the approved PET-guided therapy plan. The 17th data point was just below the 95% threshold for accuracy (dose-volume histogram score = 94.6%). All emulated fluences were physically deliverable. No toxicities were attributed to multiple FDG administrations. CONCLUSIONS: PET-guided therapy is a novel radiation therapy modality in which a radiolabeled tumor can act as its own fiducial for radiation therapy targeting. Emulated therapy dose distributions calculated from continuously acquired real-time PET data were accurate and machine-deliverable in tumors that were 2 to 5 cm in size with adequate FDG signal characteristics.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Pulmonares , Humanos , Estudos Prospectivos , Tomografia por Emissão de Pósitrons , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X/métodos , Compostos Radiofarmacêuticos
3.
Cancers (Basel) ; 12(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121471

RESUMO

Glioblastoma is an aggressive brain tumor with a propensity for intracranial recurrence. We hypothesized that tumors can be visualized with diffusion tensor imaging (DTI) before they are detected on anatomical magnetic resonance (MR) images. We retrospectively analyzed serial MR images from 30 patients, including the DTI and T1-weighted images at recurrence, at 2 months and 4 months before recurrence, and at 1 month after radiation therapy. The diffusion maps and T1 images were deformably registered longitudinally. The recurrent tumor was manually segmented on the T1-weighted image and then applied to the diffusion maps at each time point to collect mean FA, diffusivities, and neurite density index (NDI) values, respectively. Group analysis of variance showed significant changes in FA (p = 0.01) and NDI (p = 0.0015) over time. Pairwise t tests also revealed that FA and NDI at 2 months before recurrence were 11.2% and 6.4% lower than those at 1 month after radiation therapy (p < 0.05), respectively. Changes in FA and NDI were observed 2 months before recurrence, suggesting that progressive microstructural changes and neurite density loss may be detectable before tumor detection in anatomical MR images. FA and NDI may serve as non-contrast MR-based biomarkers for detecting subclinical tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...