Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetics ; 159(1): 219-28, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11560899

RESUMO

Coracle is a member of the Protein 4.1 superfamily of proteins, whose members include Protein 4.1, the Neurofibromatosis 2 tumor suppressor Merlin, Expanded, the ERM proteins, protein tyrosine phosphatases, and unconventional myosins. Recent evidence suggests that members of this family participate in cell signaling events, including those that regulate cell proliferation and the cytoskeleton. Previously, we demonstrated that Coracle protein is localized to the septate junction in epithelial cells and is required for septate junction integrity. Loss of coracle function leads to defects in embryonic development, including failure in dorsal closure, and to proliferation defects. In addition, we determined that the N-terminal 383 amino acids define an essential functional domain possessing membrane-organizing properties. Here we investigate the full range of functions provided by this highly conserved domain and find that it is sufficient to rescue all embryonic defects associated with loss of coracle function. In addition, this domain is sufficient to rescue the reduced cell proliferation defect in imaginal discs, although it is incapable of rescuing null mutants to the adult stage. This result suggests the presence of a second functional domain within Coracle, a notion supported by molecular characterization of a series of coracle alleles.


Assuntos
Proteínas Sanguíneas/química , Proteínas do Citoesqueleto/química , Proteínas de Drosophila , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/química , Neuropeptídeos , Fosfoproteínas/química , Alelos , Aminoácidos/química , Animais , Divisão Celular , Clonagem Molecular , Cruzamentos Genéticos , Citoplasma/metabolismo , Drosophila/embriologia , Drosophila/genética , Éxons , Íntrons , Modelos Genéticos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases/metabolismo , Transgenes
2.
Genetics ; 158(2): 667-79, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11404331

RESUMO

Merlin, the Drosophila homologue of the human tumor suppressor gene Neurofibromatosis 2 (NF2), is required for the regulation of cell proliferation and differentiation. To better understand the cellular functions of the NF2 gene product, Merlin, recent work has concentrated on identifying proteins with which it interacts either physically or functionally. In this article, we describe genetic screens designed to isolate second-site modifiers of Merlin phenotypes from which we have identified five multiallelic complementation groups that modify both loss-of-function and dominant-negative Merlin phenotypes. Three of these groups, Group IIa/scribbler (also known as brakeless), Group IIc/blistered, and Group IId/net, are known genes, while two appear to be novel. In addition, two genes, Group IIa/scribbler and Group IIc/blistered, alter Merlin subcellular localization in epithelial and neuronal tissues, suggesting that they regulate Merlin trafficking or function. Furthermore, we show that mutations in scribbler and blistered display second-site noncomplementation with one another. These results suggest that Merlin, blistered, and scribbler function together in a common pathway to regulate Drosophila wing epithelial development.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Genes Dominantes , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Fatores de Crescimento Neural , Proteínas Nucleares/genética , Alelos , Animais , Diferenciação Celular , Divisão Celular , Cruzamentos Genéticos , Drosophila/genética , Epitélio/embriologia , Teste de Complementação Genética , Homozigoto , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mutação , Neurofibromina 2 , Fenótipo , Células Fotorreceptoras de Invertebrados/embriologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Ligação Proteica , Fator de Resposta Sérica , Asas de Animais/embriologia , Asas de Animais/patologia
3.
J Neurogenet ; 14(2): 63-106, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10992163
4.
Dev Biol ; 221(1): 181-94, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10772800

RESUMO

Cdc42, a member of the Rho family of GTP binding proteins, functions in the formation of polarized actin structures, in elongation of cell shape, and in cell signaling. Although genetic mutations previously have not been available in multicellular organisms, studies have attempted to discern Cdc42 functions in organisms, including Drosophila, using dominant active or interfering alleles. Here, for the first time, we examine the functions of Cdc42 in developing tissues using loss-of-function mutations in the Drosophila Cdc42 gene. We find that Cdc42(-) epithelial cells fail to elongate into a columnar cell shape and cannot maintain a monolayered epithelial structure. In contrast to previous studies, we find no requirement for Cdc42 in cell division or in activation of the Jun N-terminal kinase pathway. In addition, Cdc42 function is not required for cytoplasmic actin filament assembly in the nurse cells during oogenesis, although it may facilitate this process. Furthermore, our results indicate that Cdc42 plays a role in intercellular interactions between the germ line and the somatic follicle cells. These results confirm the role of Cdc42 in actin filament assembly and provide new insights into its functions in epithelial morphogenesis and regulating intercellular signaling events.


Assuntos
Actinas/metabolismo , Drosophila/embriologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Tamanho Celular , Drosophila/genética , Epitélio/embriologia , Olho/embriologia , Imunofluorescência , Células Germinativas/metabolismo , Hibridização In Situ , Proteínas Quinases JNK Ativadas por Mitógeno , Microscopia Eletrônica de Varredura , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Sistema Nervoso/embriologia , Fenótipo , Transdução de Sinais , Asas de Animais/embriologia , Proteína cdc42 de Ligação ao GTP/genética
5.
Development ; 127(6): 1315-24, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10683183

RESUMO

Neurofibromatosis-2 is an inherited disorder characterized by the development of benign schwannomas and other Schwann-cell-derived tumors associated with the central nervous system. The Neurofibromatosis-2 tumor suppressor gene encodes Merlin, a member of the Protein 4.1 superfamily most closely related to Ezrin, Radixin and Moesin. This discovery suggested a novel function for Protein 4.1 family members in the regulation of cell proliferation; proteins in this family were previously thought to function primarily to link transmembrane proteins to underlying cortical actin. To understand the basic cellular functions of Merlin, we are investigating a Drosophila Neurofibromatosis-2 homologue, Merlin. Loss of Merlin function in Drosophila results in hyperplasia of the affected tissue without significant disruptions in differentiation. Similar phenotypes have been observed for mutations in another Protein 4.1 superfamily member in Drosophila, expanded. Because of the phenotypic and structural similarities between Merlin and expanded, we asked whether Merlin and Expanded function together to regulate cell proliferation. In this study, we demonstrate that recessive loss of function of either Merlin or expanded can dominantly enhance the phenotypes associated with mutations in the other. Consistent with this genetic interaction, we determined that Merlin and Expanded colocalize in Drosophila tissues and cells, and physically interact through a conserved N-terminal region of Expanded, characteristic of the Protein 4.1 family, and the C-terminal domain of Merlin. Loss of function of both Merlin and expanded in clones revealed that these proteins function to regulate differentiation in addition to proliferation in Drosophila. Further genetic analyses suggest a role for Merlin and Expanded specifically in Decapentaplegic-mediated differentiation events. These results indicate that Merlin and Expanded function together to regulate proliferation and differentiation, and have implications for understanding the functions of other Protein 4.1 superfamily members.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Genes de Insetos , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Neurofibromina 2 , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Divisão Celular/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Feminino , Genes da Neurofibromatose 2 , Genes Supressores de Tumor , Humanos , Proteínas de Insetos/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Fenótipo , Distribuição Tecidual , Asas de Animais/crescimento & desenvolvimento
6.
Mol Biol Cell ; 9(12): 3505-19, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9843584

RESUMO

Although extensively studied biochemically, members of the Protein 4. 1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis of coracle, one of the first for a member of the Protein 4. 1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphic coracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical-basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults.


Assuntos
Proteínas do Citoesqueleto , Drosophila/genética , Drosophila/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Neuropeptídeos , Alelos , Animais , Padronização Corporal , Drosophila/crescimento & desenvolvimento , Células Epiteliais/ultraestrutura , Feminino , Genes de Insetos , Teste de Complementação Genética , Masculino , Microscopia Eletrônica , Fenótipo , Mutação Puntual
8.
J Cell Biol ; 141(7): 1589-99, 1998 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-9647651

RESUMO

Merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene, is a member of the protein 4.1 superfamily that is most closely related to ezrin, radixin, and moesin (ERM). NF2 is a dominantly inherited disease characterized by the formation of bilateral acoustic schwannomas and other benign tumors associated with the central nervous system. To understand its cellular functions, we are studying a Merlin homologue in Drosophila. As is the case for NF2 tumors, Drosophila cells lacking Merlin function overproliferate relative to their neighbors. Using in vitro mutagenesis, we define functional domains within Merlin required for proper subcellular localization and for genetic rescue of lethal Merlin alleles. Remarkably, the results of these experiments demonstrate that all essential genetic functions reside in the plasma membrane- associated NH2-terminal 350 amino acids of Merlin. Removal of a seven-amino acid conserved sequence within this domain results in a dominant-negative form of Merlin that is stably associated with the plasma membrane and causes overproliferation when expressed ectopically in the wing. In addition, we provide evidence that the COOH-terminal region of Merlin has a negative regulatory role, as has been shown for ERM proteins. These results provide insights into the functions and functional organization of a novel tumor suppressor gene.


Assuntos
Drosophila/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Animais , Sítios de Ligação , Linhagem Celular , Drosophila/genética , Drosophila/fisiologia , Feminino , Genes de Insetos , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutagênese , Neurofibromina 2 , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/fisiologia , Frações Subcelulares
9.
J Cell Biol ; 140(6): 1463-73, 1998 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-9508778

RESUMO

The protein 4.1 superfamily is comprised of a diverse group of cytoplasmic proteins, many of which have been shown to associate with the plasma membrane via binding to specific transmembrane proteins. Coracle, a Drosophila protein 4.1 homologue, is required during embryogenesis and is localized to the cytoplasmic face of the septate junction in epithelial cells. Using in vitro mutagenesis, we demonstrate that the amino-terminal 383 amino acids of Coracle define a functional domain that is both necessary and sufficient for proper septate junction localization in transgenic embryos. Genetic mutations within this domain disrupt the subcellular localization of Coracle and severely affect its genetic function, indicating that correct subcellular localization is essential for Coracle function. Furthermore, the localization of Coracle and the transmembrane protein Neurexin to the septate junction display an interdependent relationship, suggesting that Coracle and Neurexin interact with one another at the cytoplasmic face of the septate junction. Consistent with this notion, immunoprecipitation and in vitro binding studies demonstrate that the amino-terminal 383 amino acids of Coracle and cytoplasmic domain of Neurexin interact directly. Together these results indicate that Coracle provides essential membrane-organizing functions at the septate junction, and that these functions are carried out by an amino-terminal domain that is conserved in all protein 4.1 superfamily members.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas do Citoesqueleto , Proteínas de Drosophila , Drosophila/genética , Proteínas de Insetos/química , Junções Intercelulares/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos , Sequência de Aminoácidos , Animais , Citoplasma/química , Citoplasma/metabolismo , Proteínas de Insetos/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Mutagênese/fisiologia , Proteínas do Tecido Nervoso/análise , Fenótipo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Glândulas Salivares/química
10.
Genetics ; 146(1): 245-52, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9136014

RESUMO

Reverse genetic analysis in Drosophila has been greatly aided by a growing collection of lethal P transposable element insertions that provide molecular tags for the identification of essential genetic loci. However, because the screens performed to date primarily have generated autosomal P-element insertions, this collection has not been as useful for performing reverse genetic analysis of X-linked genes. We have designed a reverse genetic screen that takes advantage of the hemizygosity of the X chromosome in males together with a cosmid-based transgene that serves as an autosomally linked duplication of a small region of the X chromosome. The efficacy and efficiency of this method is demonstrated by the isolation of mutations in Drosophila homologues of two well-studied genes, the human Neurofibromatosis 2 tumor suppressor and the yeast CDC42 gene. The method we describe should be of general utility for the isolation of mutations in other X-linked genes, and should also provide an efficient method for the isolation of new allcles of existing X-linked or autosomal mutations in Drosophila.


Assuntos
Proteínas de Ciclo Celular/genética , Drosophila/genética , Proteínas de Ligação ao GTP/genética , Genes da Neurofibromatose 2 , Animais , Cosmídeos , Feminino , Teste de Complementação Genética , Humanos , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Insercional , Neurofibromina 2 , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP
12.
J Cell Biol ; 133(4): 843-52, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8666669

RESUMO

Interest in members of the protein 4.1 super-family, which includes the ezrin-radixin-moesin (ERM) group, has been stimulated recently by the discovery that the human neurofibromatosis 2 (NF2) tumor suppressor gene encodes an ERM-like protein, merlin. Although many proteins in this family are thought to act by linking the actin-based cytoskeleton to transmembrane proteins, the cellular functions of merlin have not been defined. To investigate the cellular and developmental functions of these proteins, we have identified and characterized Drosophila homologues of moesin (Dmoesin) and of the NF2 tumor suppressor merlin (Dmerlin). Using specific antibodies, we show that although these proteins are frequently coexpressed in developing tissues, they display distinct subcellular localizations. While Dmoesin is observed in continuous association with the plasma membrane, as is typical for an ERM family protein, Dmerlin is found in punctuate structures at the membrane and in the cytoplasm. Investigation of Dmerlin cultured cells demonstrates that it is associated with endocytic compartments. As a result of these studies, we propose that the merlin protein has unique functions in the cell which differ from those of other ERM family members.


Assuntos
Drosophila melanogaster/fisiologia , Proteínas de Membrana/metabolismo , Neurofibromina 2 , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Sistema Nervoso Central/embriologia , Primers do DNA , Drosophila melanogaster/embriologia , Endocitose/fisiologia , Genes da Neurofibromatose 2 , Cobaias , Humanos , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
13.
Development ; 120(3): 545-57, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8162854

RESUMO

Protein 4.1 functions to link transmembrane proteins with the underlying spectrin/actin cytoskeleton. To permit a genetic analysis of the developmental role and cellular functions of this membrane-skeletal protein, we have identified and characterized its Drosophila homologue (termed D4.1). D4.1 is localized to the septate junctions of epithelial cells and is encoded by the coracle gene, a new locus whose primary mutant phenotype is a failure in dorsal closure. In addition, coracle mutations dominantly suppress Ellipse, a hypermorphic allele of the Drosophila EGF-receptor homologue. These data indicate that D4.1 is associated with the septate junction, and suggest that it may play a role in cell-cell interactions that are essential for normal development.


Assuntos
Proteínas do Citoesqueleto , Drosophila/genética , Epitélio/fisiologia , Junções Intercelulares/fisiologia , Proteínas de Membrana/genética , Neuropeptídeos , Sequência de Aminoácidos , Animais , Comunicação Celular/genética , Drosophila/embriologia , Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Morfogênese/genética , Mutação/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Xenopus/genética
14.
Cell ; 74(2): 319-29, 1993 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-8343959

RESUMO

The Notch gene of Drosophila plays an important role in cell fate specification throughout development. To investigate the functions of specific structural domains of the Notch protein in vivo, a series of deletion mutants have been ectopically expressed under the hsp70 heat shock promoter. Two classes of dominant phenotypes are observed, one suggestive of Notch loss-of-function mutations and the other of Notch gain-of-function mutations. Dominant activated phenotypes result from overexpression of a protein lacking most extracellular sequences, while dominant negative phenotypes result from overexpression of a protein lacking most intracellular sequences. These results support the notion that Notch functions as a receptor whose extracellular domain mediates ligand binding, resulting in the transmission of developmental signals by the cytoplasmic domain. Finally, the phenotypes observed suggest that the cdc 10/ankyrin repeat region within the intracellular domain plays an essential role in the postulated signal transduction events.


Assuntos
Proteínas de Ciclo Celular , Drosophila/genética , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Anquirinas , Compartimento Celular , Análise Mutacional de DNA , Proteínas de Drosophila , Proteínas Fúngicas , Proteínas de Choque Térmico/genética , Mutação , Fenótipo , Regiões Promotoras Genéticas/genética , Receptores Notch , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Schizosaccharomyces pombe , Deleção de Sequência , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Transcrição
15.
Development ; 117(2): 493-507, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8330521

RESUMO

Delta and Notch function are required for cell fate specification in numerous tissues during embryonic and postembryonic Drosophila development. Delta is expressed by all members of interacting cell populations within which fates are being specified and is subsequently down-regulated as cells stably adopt particular fates. Multiphasic expression in the derivatives of many germ layers implies successive requirements for Delta function in a number of tissues. At the cellular level, Delta and Notch expression are generally coincident within developing tissues. At the subcellular level, Delta and Notch are localized in apparent endocytic vesicles during down-regulation from the surfaces of interacting cells, implying an interaction consistent with their proposed roles as signal and receptor in cellular interactions during development.


Assuntos
Drosophila/genética , Indução Embrionária/genética , Genes de Insetos , Hormônios de Inseto/genética , Proteínas de Membrana/genética , Animais , Diferenciação Celular/genética , Drosophila/embriologia , Proteínas de Drosophila , Gástrula/fisiologia , Expressão Gênica/genética , Imuno-Histoquímica , Hormônios de Inseto/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/fisiologia , Microscopia Eletrônica , Receptores Notch
16.
Development ; 115(4): 913-22, 1992 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1451667

RESUMO

The Notch gene in Drosophila encodes a transmembrane protein with homology to EGF that, in a variety of tissues, appears to mediate cell interactions necessary for cell fate choices. Here we demonstrate that oogenesis and spermatogenesis depend on Notch. We examine the phenotypes of the temperature-sensitive Notch allele, Nts1, and, using a monoclonal antibody, determine the cellular and subcellular distribution of Notch protein during oogenesis. We show that Nts1 is associated with a missense mutation in the extracellular, EGF homologous region of Notch and that at non-permissive temperatures oogenesis is blocked and the subcellular distribution of the protein is altered. In wild-type ovaries, Notch protein is found on the apical surface of somatically derived follicle cells, while in the germline-derived cells the protein is not polarized. These findings are discussed in view of the hypothesis that Notch acts as a multifunctional receptor to mediate developmentally important cell interactions.


Assuntos
Drosophila/genética , Indução Embrionária/genética , Expressão Gênica/fisiologia , Genes/fisiologia , Hormônios de Inseto/genética , Proteínas de Membrana/genética , Oogênese/genética , Animais , Proteínas de Drosophila , Feminino , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Ovário/embriologia , Fenótipo , Receptores Notch , Espermatogênese/genética , Testículo/embriologia
17.
Cell ; 67(4): 687-99, 1991 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-1657403

RESUMO

The neurogenic loci Notch and Delta, which both encode EGF-homologous transmembrane proteins, appear to function together in mediating cell-cell communication and have been shown to interact at the cell surface in vitro. To examine the role of the EGF repeats in this interaction, we performed an extensive deletion mutagenesis of the extracellular domain of Notch. We find that of the 36 EGF repeats of Notch, only two, 11 and 12, are both necessary and sufficient to mediate interactions with Delta. Furthermore, this Delta binding ability is conserved in the corresponding two repeats from the Xenopus Notch homolog. We report a novel molecular interaction between Notch and Serrate, another EGF-homologous transmembrane protein containing a region of striking similarity to Delta, and show that the same two EGF repeats of Notch also constitute a Serrate binding domain. These results suggest that Notch may act as a multifunctional receptor whose 36 EGF repeats form a tandem array of discrete ligand-binding units, each of which may potentially interact with several different proteins during development.


Assuntos
Hormônios de Inseto/fisiologia , Proteínas de Membrana/fisiologia , Receptores de Superfície Celular/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/fisiologia , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular/fisiologia , Agregação Celular , Análise Mutacional de DNA , Proteínas de Drosophila , Drosophila melanogaster , Fator de Crescimento Epidérmico/fisiologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Dados de Sequência Molecular , Receptores Notch , Alinhamento de Sequência , Proteínas Serrate-Jagged , Especificidade da Espécie , Relação Estrutura-Atividade , Proteínas de Xenopus , Xenopus laevis
18.
J Cell Biol ; 113(3): 657-69, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-2016340

RESUMO

The Notch gene in Drosophila encodes a transmembrane protein with homology to EGF that appears to mediate cell-cell interactions necessary for proper epidermal vs. neural fate decisions. In this study, we examine Notch expression in detail throughout embryonic and imaginal development using confocal laser-scanning microscopy and specific mAb probes. We find that Notch is expressed in a tissue-specific manner as early as the cellular blastoderm stage, when cells of the presumptive mesoderm clearly express less Notch than adjacent ectodermal precursors. Notch is abundantly expressed during the initial determination of neuronal lineages, such as the embryonic neuroblasts and the precursors of sensory neurons in the imaginal disc epithelia, but expression quickly decreases during subsequent differentiation. These changing patterns of Notch expression do not correlate well with cell movements, and thus do not appear to support the notion that the major function of Notch is to maintain epithelial integrity via adhesive mechanisms. Our data suggest instead that Notch may act as a cell-surface receptor, perhaps functioning in the lateral inhibition mechanism that is necessary for proper spacing of neuronal precursors.


Assuntos
Drosophila/crescimento & desenvolvimento , Hormônios de Inseto/biossíntese , Proteínas de Membrana/biossíntese , Animais , Blastoderma/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila , Imunofluorescência , Regulação da Expressão Gênica , Hormônios de Inseto/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas de Membrana/genética , Mesoderma/metabolismo , Metamorfose Biológica , Mitose , Neurônios/citologia , Neurônios/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Receptores Notch
20.
Cell ; 61(3): 523-34, 1990 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-2185893

RESUMO

Genetic analyses have raised the possibility of interactions between the gene products of the neurogenic loci Notch and Delta, each of which encodes a transmembrane protein with EGF homology. To examine the possibility of intermolecular association between the products of these two genes, we studied the effects of their expression on aggregation in Drosophila S2 cells. We find that Notch-expressing cells form mixed aggregates specifically with cells that express Delta and that this process is calcium dependent. In addition, we show that Notch and Delta can associate within the membrane of a single cell, and further, that they form detergent-soluble intermolecular complexes. Our analyses suggest that Notch and Delta proteins interact at the cell surface via their extracellular domains.


Assuntos
Drosophila/genética , Fator de Crescimento Epidérmico/genética , Genes , Hormônios de Inseto/genética , Proteínas de Membrana/genética , Animais , Western Blotting , Cálcio/farmacologia , Agregação Celular/efeitos dos fármacos , Células Cultivadas , Drosophila/embriologia , Proteínas de Drosophila , Imunofluorescência , Hormônios de Inseto/isolamento & purificação , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/isolamento & purificação , Sistema Nervoso , Receptores Notch , Homologia de Sequência do Ácido Nucleico , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA