Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047967

RESUMO

Phototoxicity and skin cancer are severe adverse effects of the anti-fungal drug Voriconazole (VOR). These adverse effects resemble those seen in xeroderma pigmentosum (XP), caused by defective DNA nucleotide excision repair (NER), and we show that VOR decreases NER capacity. We show that VOR treatment does not perturb the expression of NER, or other DNA damage-related genes, but that VOR localizes to heterochromatin, in complexes containing histone acetyltransferase GCN5. Impairment of GCN5 binding to histone H3 reduced acetylation of H3, restricting damage-dependent chromatin unfolding, thereby reducing NER initiation. Restoration of H3 histone acetylation using histone deacetylase inhibitors (HDACi), rescued VOR-induced NER repression, thus offering a preventive therapeutic option. These findings underline the importance of DNA damage-dependent chromatin remodeling as an important prerequisite of functional DNA repair.

2.
Mol Cancer ; 22(1): 207, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102680

RESUMO

Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.


Assuntos
Interferon gama , Neoplasias , Humanos , Animais , Camundongos , Interferon gama/farmacologia , Interferon gama/metabolismo , Antígeno B7-H1 , Linhagem Celular Tumoral , Imunoterapia , Microambiente Tumoral , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA