Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vascular ; 31(2): 250-256, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34875933

RESUMO

OBJECTIVE: This study aims to investigate the methods for rat spinal cord ischemia injury models with a high long-term survival rate. METHODS: The rats were divided into three groups: the treatment group, the control group, and the sham operation group. The treatment group had a blocked thoracic aorta (landing zone 3 by Ishimaru - T11) + aortic bypass circulation for 20 min. In the control group, the thoracic aorta at the landing zone 3 was blocked for 20 min. In the sham operation group, only thoracotomy without thoracic aortic occlusion was performed. The mean arterial blood pressure (MABP) of the thoracic aorta and caudal artery before and after thoracic aortic occlusion was monitored intraoperatively. Spinal cord function was monitored by a transcranial motor evoked potential (Tc-MEP) during the operation. Spinal cord function was evaluated by the BBB scale (Basso, Beattie, & Bresnahan locomotor rating scale) scores at multiple postoperative time points. The spinal cord sections of the rats were observed for 7 days after surgery, and the survival curves were analyzed for 28 days after surgery. RESULTS: After aortic occlusion, the MABP of thoracic aorta decreased to 6% of that before occlusion, and the MABP of caudal artery decreased to 63% of that before occlusion in the treatment group. In the control group, the MABP of both thoracic aorta and caudal artery decreased to 19% of that before occlusion. The Tc-MEP waveform of the treatment group disappeared after 6 min, and that of the control group disappeared after 8 min until the end of surgery. There was no change in the Tc-MEP waveform in the sham operation group. The BBB score of the treatment group decreased more obviously than the control group, and there was a significant difference. There was no decrease in the sham group. Spinal cord sections showed a large number of degeneration and necrosis of neurons, infiltration of inflammatory cells, and proliferation of surrounding glial cells in the treatment group. In the control group, multiple neurons were necrotic. The histology of the sham operation group was normal. The 28-day survival rate of the treatment group was 73.3%, which was higher than the control group (40.0%), and there was a significant difference (p < 0.05). CONCLUSION: Thoracic aortic occlusion combined with aortic bypass is an effective modeling method for rats with accurate modeling effects and high long-term survival rates.


Assuntos
Doenças da Aorta , Arteriopatias Oclusivas , Isquemia do Cordão Espinal , Ratos , Animais , Isquemia do Cordão Espinal/etiologia , Isquemia , Medula Espinal/irrigação sanguínea , Medula Espinal/patologia , Medula Espinal/fisiologia , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/cirurgia , Aorta Torácica/patologia , Doenças da Aorta/patologia , Necrose/patologia
3.
Chemosphere ; 280: 130863, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162100

RESUMO

The potential effects of extracellular polymeric substances (EPS) on the behavior and toxicity of silver nanoparticle (Ag-NPs) and silver sulfide nanoparticle (Ag2S-NPs) remains ambiguous. The interaction of EPS from Bacillus subtilis with Ag2S-NPs, metallic Ag-NPs, or ionic Ag, and the associated plant safety had been examined in this study. The biological impacts of Ag-NPs and Ag2S-NPs were Ag form-dependent and highly influenced by microbial EPS. Compared with metallic Ag-NPs, Ag2S-NPs exert inert biological impacts, as revealed by 3.44 times lower Ag bioaccumulation in wheat (Triticum aestivum L.) seedlings and nearly reduce plant biomass when wheat was subjected to 1.0 mg-Ag L-1 of Ag-NPs and Ag2S-NPs with the transfer factors of 151.56-930.87 vs. 12.52-131.81, respectively. These observations were coincident with the low dissolved Ag ([Ag]diss) in the Ag2S-NPs treatment than the Ag-NPs treatment (114.0 vs. 0.0791, µg L-1). Compared with the enhanced toxicity of Ag2S-NPs to wheat, Bacillus subtilis EPS significantly alleviate the phytotoxicity of Ag-NPs, as revealed by the relative root elongation (7.15-45.40% decrease vs. 2.39-11.75% increase), and malondialdehyde (1.47-83.22% increase vs. 8.57-25.25% decrease) and H2O2 (11.27-71.78% increase vs. 5.16-36.67% decrease) contents. These constrasting plant responses of B. subtilis EPS are mainly caused by their complexation property with toxic Ag+ and nutrient elements for wheat stressed by Ag-NPs and Ag2S-NPs, respectively. Our findings highlight the importance of rhizospheric EPS in affecting the biogeochemistry and ecotoxicity of metal nanoparticles including Ag-NPs and Ag2S-NPs in agricultural systems.


Assuntos
Nanopartículas Metálicas , Prata , Bioacumulação , Matriz Extracelular de Substâncias Poliméricas , Peróxido de Hidrogênio , Nanopartículas Metálicas/toxicidade , Raízes de Plantas , Prata/toxicidade , Triticum
4.
Chemosphere ; 258: 127349, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32540544

RESUMO

The current understanding of the biological impacts of silver nanoparticles (AgNPs) is restricted to the direct interactions of the particles with biota. Very little is known about their intracellular fate and subsequent toxic consequences. In this research we investigated the uptake, internal fate (i,e., Ag subcellular partitioning and chemical forms), and phytotoxicity of AgNPs in lettuce following foliar versus root exposure. At the same AgNP exposure concentrations, root exposure led to more deleterious effects than foliar exposure as evidenced by a larger extent of reduced plant biomass, elevated oxidative damage, as well as a higher amount of ultrastructural injuries, despite foliar exposure leading to 2.6-7.6 times more Ag bioaccumulation. Both Ag subcellular partitioning and chemical forms present within the plant appeared to elucidate this difference in toxicity. Following foliar exposure, high Ag in biologically detoxified metals pool (29.2-53.0% by foliar exposure vs. 12.8-45.4% by root exposure) and low Ag proportion in inorganic form (6.1-11.9% vs. 14.1-19.8%) potentially associated with AgNPs tolerance. Silver-containing NPs (24.8-38.6 nm, 1.5-2.3 times larger than the initial size) were detected in lettuce plants exposed to NPs and to dissolved Ag+, suggesting possible transformation and/or aggregation of AgNPs in the plants. Our observations show that the exposure pathway significantly affects the uptake and internal fate of AgNPs, and thus the associated phytotoxicity. The results are an important contribution to improve risk assessment of NPs, and will be critical to ensure food security.


Assuntos
Lactuca/fisiologia , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/toxicidade , Biomassa , Lactuca/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Poluentes do Solo/química
5.
Int J Syst Evol Microbiol ; 68(11): 3447-3451, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30222094

RESUMO

A Gram-stain-negative, aerobic, rod-shaped and orange-coloured strain, designated LHR20T, was isolated from a marine solar saltern. The novel strain LHR20T was able to grow at 15-40 °C (optimum 33-37 °C), at pH 6.5-9.5 (optimum pH 7.5-8.0) and with 2.0-11.0 % (w/v) NaCl (optimum 4.0-5.0 %). MK-6 was the sole respiratory quinone, and the major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The predominant polar lipids of strain LHR20T were phosphatidylethanolamine (PE), aminolipid (AL), glycolipid (GL1) and two unidentified lipids (L1, L2). The genomic DNA G+C content was 35.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LHR20T was a member of the genus Brumimicrobium and its closest relative was Brumimicrobium mesophilum JCM 14063T (97.5 % sequence similarity). The average nucleotide identity value between strain LHR20T and B. mesophilum JCM 14063T was 73.7 %. This evidence from phenotypic, chemotaxonomic and phylogenetic analyses suggests that strain LHR20T represents a novel species of the genus Brumimicrobium. Therefore, the name Brumimicrobium salinarum sp. nov. is proposed. The type strain is LHR20T (=KCTC 62372T=MCCC 1H00247T).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Salinidade , Água do Mar/microbiologia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Glicolipídeos/química , Fosfatidiletanolaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...