Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38392382

RESUMO

The monogamy property of entanglement is an intriguing feature of multipartite quantum entanglement. Most entanglement measures satisfying the monogamy inequality have turned out to be convex. Whether nonconvex entanglement measures obey the monogamy inequalities remains less known at present. As a well-known measure of entanglement, the logarithmic negativity is not convex. We elucidate the constraints of multi-qubit entanglement based on the logarithmic convex-roof extended negativity (LCREN) and the logarithmic convex-roof extended negativity of assistance (LCRENoA). Using the Hamming weight derived from the binary vector associated with the distribution of subsystems, we establish monogamy inequalities for multi-qubit entanglement in terms of the αth-power (α≥4ln2) of LCREN, and polygamy inequalities utilizing the αth-power (0≤α≤2) of LCRENoA. We demonstrate that these inequalities give rise to tighter constraints than the existing ones. Furthermore, our monogamy inequalities are shown to remain valid for the high-dimensional states that violate the CKW monogamy inequality. Detailed examples are presented to illustrate the effectiveness of our results in characterizing the multipartite entanglement distributions.

2.
Phys Rev Lett ; 131(3): 030402, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540858

RESUMO

The quantum battery capacity is introduced in this Letter as a figure of merit that expresses the potential of a quantum system to store and supply energy. It is defined as the difference between the highest and the lowest energy that can be reached by means of the unitary evolution of the system. This function is closely connected to the ergotropy, but it does not depend on the temporary level of energy of the system. The capacity of a quantum battery can be directly linked with the entropy of the battery state, as well as with measures of coherence and entanglement.

3.
Phys Rev E ; 107(5-1): 054134, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37329009

RESUMO

We study multipartite entanglement and genuine tripartite entanglement based on general symmetric informationally complete positive operator valued measurements (GSIC-POVMs). By representing the bipartite density matrices in terms of GSIC-POVMs, we obtain the lower bound of the sum of squares of the corresponding probability. We then construct a special matrix with the correlation probability of GSIC-POVMs to derive useful and operational criteria to detect genuine tripartite entanglement. We also generalize the results to obtain a sufficient criterion to detect entanglement for multipartite quantum states in arbitrary dimensions. Detailed examples show that the new method can detect more entangled and genuine entangled states than previous criteria.

4.
iScience ; 26(4): 106306, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36994076

RESUMO

Universal quantum algorithms (UQA) implemented on fault-tolerant quantum computers are expected to achieve an exponential speedup over classical counterparts. However, the deep quantum circuits make the UQA implausible in the current era. With only the noisy intermediate-scale quantum (NISQ) devices in hand, we introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology. Based on this framework, we present two quantum-assisted quantum algorithms for simulating open quantum systems, which utilize two parameterized quantum circuits to achieve a short-time evolution. We propose a variational quantum state preparation method, as a subroutine to prepare the ancillary state, for loading a classical vector into a quantum state with a shallow quantum circuit and logarithmic number of qubits. We demonstrate numerically our approaches for a two-level system with an amplitude damping channel and an open version of the dissipative transverse field Ising model on two sites.

5.
Entropy (Basel) ; 25(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36981351

RESUMO

Quantum technology can break through the bottleneck of traditional information technology by ensuring information security, speeding up computation, improving measurement accuracy, and providing revolutionary solutions to some issues of economic and social development [...].

6.
Entropy (Basel) ; 25(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673296

RESUMO

Noise exists inherently in realistic quantum systems and affects the evolution of quantum systems. We investigate the dynamics of quantum networks in noisy environments by using the fidelity of the quantum evolved states and the classical percolation theory. We propose an analytical framework that allows us to characterize the stability of quantum networks in terms of quantum noises and network topologies. The calculation results of the framework determine the maximal time that quantum networks with different network topologies can maintain the ability to communicate under noise. We demonstrate the results of the framework through examples of specific graphs under amplitude damping and phase damping noises. We further consider the capacity of the quantum network in a noisy environment according to the proposed framework. The analytical framework helps us better understand the evolution time of a quantum network and provides a reference for designing large quantum networks.

7.
J Int Med Res ; 50(11): 3000605221134472, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36440806

RESUMO

OBJECTIVE: To evaluate the feasibility, safety, and short-term outcomes of middle rectal resection followed by transanal specimen extraction. METHODS: Forty-four patients with small mid-rectal tumors underwent laparoscopic rectal resection followed by transanal specimen extraction. RESULTS: The procedure was successful in all patients without intraoperative conversion or additional access. The mean operation time was 182.7 minutes (range, 130-255 minutes), the mean blood loss was 26.5 mL (range, 5-120 mL), the mean postoperative exhaust time was 31.3 hours (range, 16-60 hours), and the mean length of hospital stay was 9.5 days (range, 8-19 days). One patient developed anastomotic leakage, which was treated by intravenous antibiotics and daily pelvic cavity flushes through the abdominal drainage tube. No infection-related complications or anal incontinence were observed. The mean tumor size was 2.1 cm (range, 1.6-3.2 cm), the mean number of harvested lymph nodes was 16.5 (range, 6-31), and the mean follow-up time was 8.5 months (range, 2-16 months). By the last follow-up, no signs of recurrence had been found in any patient. CONCLUSION: The combination of standard laparoscopic proctectomy and transanal specimen extraction could become a well-established strategy for selected patients.


Assuntos
Laparoscopia , Neoplasias Retais , Cirurgiões , Humanos , Estudos Retrospectivos , Neoplasias Retais/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos
8.
Entropy (Basel) ; 24(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36141183

RESUMO

Einstein-Podolsky-Rosen steering is a kind of powerful nonlocal quantum resource in quantum information processing such as quantum cryptography and quantum communication. Many criteria have been proposed in the past few years to detect steerability, both analytically and numerically, for bipartite quantum systems. We propose effective criteria for tripartite steerability and genuine tripartite steerability of three-qubit quantum states by establishing connections between the tripartite steerability (resp. genuine tripartite steerability) and the tripartite entanglement (resp. genuine tripartite entanglement) of certain corresponding quantum states. From these connections, tripartite steerability and genuine tripartite steerability can be detected without using any steering inequalities. The "complex cost" of determining tripartite steering and genuine tripartite steering can be reduced by detecting the entanglement of the newly constructed states in the experiment. Detailed examples are given to illustrate the power of our criteria in detecting the (genuine) tripartite steerability of tripartite states.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-507787

RESUMO

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA. 5. Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such convergent evolution and its impact on humoral immunity remain unclear. Here, we demonstrate that these convergent mutations can cause striking evasion of neutralizing antibody (NAb) drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2 binding capability. BQ.1.1.10, BA.4.6.3, XBB, and CH. 1.1 are the most antibody-evasive strain tested, even exceeding SARS-CoV-1 level. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies (mAbs) isolated from BA.2 and BA.5 breakthrough-infection convalescents. Importantly, due to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection caused significant reductions in the epitope diversity of NAbs and increased proportion of non-neutralizing mAbs, which in turn concentrated humoral immune pressure and promoted convergent evolution. Moreover, we showed that the convergent RBD mutations could be accurately inferred by integrated deep mutational scanning (DMS) profiles, and the evolution trends of BA.2.75/BA.5 subvariants could be well-simulated through constructed convergent pseudovirus mutants. Together, our results suggest current herd immunity and BA.5 vaccine boosters may not provide good protection against infection. Broad-spectrum SARS-CoV-2 vaccines and NAb drugs development should be highly prioritized, and the constructed mutants could help to examine their effectiveness in advance.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-503384

RESUMO

Multiple BA.4 and BA.5 subvariants with R346 mutations on the spike glycoprotein have been identified in various countries, such as BA.4.6/BF.7 harboring R346T, BA.4.7 harboring R346S, and BA.5.9 harboring R346I. These subvariants, especially BA.4.6, exhibit substantial growth advantages compared to BA.4/BA.5. In this study, we showed that BA.4.6, BA.4.7, and BA.5.9 displayed higher humoral immunity evasion capability than BA.4/BA.5, causing 1.5 to 1.9-fold decrease in NT50 of the plasma from BA.1 and BA.2 breakthrough-infection convalescents compared to BA.4/BA.5. Importantly, plasma from BA.5 breakthrough-infection convalescents also exhibits significant neutralization activity decrease against BA.4.6, BA.4.7, and BA.5.9 than BA.4/BA.5, showing on average 2.4 to 2.6-fold decrease in NT50. For neutralizing antibody drugs, Bebtelovimab remains potent, while Evusheld is completely escaped by these subvariants. Together, our results rationalize the prevailing advantages of the R346 mutated BA.4/BA.5 subvariants and urge the close monitoring of these mutants, which could lead to the next wave of the pandemic.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-499114

RESUMO

SARS-CoV-2 Omicron sublineages have escaped most RBD-targeting therapeutic neutralizing antibodies (NAbs), which proves the previous NAb drug screening strategies deficient against the fast-evolving SARS-CoV-2. Better broad NAb drug candidate selection methods are needed. Here, we describe a rational approach for identifying RBD-targeting broad SARS-CoV-2 NAb cocktails. Based on high-throughput epitope determination, we propose that broad NAb drugs should target non-immunodominant RBD epitopes to avoid herd immunity-directed escape mutations. Also, their interacting antigen residues should focus on sarbecovirus conserved sites and associate with critical viral functions, making the antibody-escaping mutations less likely to appear. Following the criteria, a featured non-competing antibody cocktail, SA55+SA58, is identified from a large collection of broad sarbecovirus NAbs isolated from SARS convalescents. SA55+SA58 potently neutralizes ACE2-utilizing sarbecoviruses, including circulating Omicron variants, and could serve as broad SARS-CoV-2 prophylactics to offer long-term protection. Our screening strategy can also be applied to identify broad-spectrum NAb drugs against other fast-evolving viruses, such as influenza viruses.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-500332

RESUMO

Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a local growth advantage over BA.2.38, BA.2.76 and BA.5 in India. The underlying mechanism of BA.2.75s enhanced infectivity, especially compared to BA.5, remains unclear. Here, we show that BA.2.75 exhibits substantially higher ACE2-binding affinity than BA.5. Also, BA.2.75 spike shows decreased thermostability and increased "up" RBD conformation in acidic conditions, suggesting enhanced low-pH-endosomal cell-entry pathway utilization. BA.2.75 is less humoral immune evasive than BA.4/BA.5 in BA.1/BA.2 breakthrough-infection convalescents; however, BA.2.75 shows heavier neutralization evasion in Delta breakthrough-infection convalescents. Importantly, plasma from BA.5 breakthrough infection exhibit significantly weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75s distinct RBD and NTD-targeting antibody escaping pattern from BA.4/BA.5. Additionally, Evusheld and Bebtelovimab remain effective against BA.2.75, and Sotrovimab recovered RBD-binding affinity. Together, our results suggest BA.2.75 may prevail after the global BA.4/BA.5 wave, and its increased receptor-binding capability could allow further incorporation of immune-evasive mutations.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489997

RESUMO

SARS-CoV-2 Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility over BA.21. The new variants receptor binding and immune evasion capability require immediate investigation. Here, coupled with Spike structural comparisons, we show that BA.2.12.1 and BA.4/BA.5 exhibit comparable ACE2-binding affinities to BA.2. Importantly, BA.2.12.1 and BA.4/BA.5 display stronger neutralization evasion than BA.2 against the plasma from 3-dose vaccination and, most strikingly, from post-vaccination BA.1 infections. To delineate the underlying antibody evasion mechanism, we determined the escaping mutation profiles2, epitope distribution3 and Omicron neutralization efficacy of 1640 RBD-directed neutralizing antibodies (NAbs), including 614 isolated from BA.1 convalescents. Interestingly, post-vaccination BA.1 infection mainly recalls wildtype-induced humoral memory. The resulting elicited antibodies could neutralize both wildtype and BA.1 and are enriched on non-ACE2-competing epitopes. However, most of these cross-reactive NAbs are heavily escaped by L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1; nevertheless, these NAbs are largely escaped by BA.2/BA.4/BA.5 due to D405N and F486V, and react weakly to pre-Omicron variants, exhibiting poor neutralization breadths. As for therapeutic NAbs, Bebtelovimab4 and Cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, while the S371F, D405N and R408S mutations would undermine most broad sarbecovirus NAbs. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.

14.
iScience ; 25(3): 103972, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35281726

RESUMO

Quantum entanglement has shown distinguished features beyond any classical state. Many methods have been presented to verify unknown entanglement with the complete information about the density matrices by quantum state tomography. In this work, we aim to identify unknown entanglement with only partial information of the state space. The witness consists of a generalized Greenberger-Horne-Zeilinger-like paradox expressed by Pauli observables, and a nonlinear entanglement witness expressed by density matrix elements. First, we verify unknown bipartite entanglement and study the robustness of entanglement witnesses against the white noise. Second, we generalize such verification to partially unknown multipartite entangled states, including the Greenberger-Horne-Zeilinger-type and W-type states. Third, we give a quantum-information application related to the quantum zero-knowledge proof. It further provides a useful method in blindly verifying universal quantum computation resources. These results may be interesting in entanglement theories, quantum communication, and quantum networks.

15.
Entropy (Basel) ; 24(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35205540

RESUMO

As already known by Rana's result, all eigenvalues of any partial-transposed bipartite state fall within the closed interval [-12,1]. In this note, we study a family of bipartite quantum states where the minimal eigenvalues of partial-transposed states are -12. For a two-qubit system, we find that the minimal eigenvalue of its partial-transposed state is -12 if and only if such a two-qubit state is maximally entangled. However this result does not hold in general for a two-qudit system when the dimensions of the underlying space are larger than two.

16.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479349

RESUMO

Omicron sub-lineage BA.2 has rapidly surged globally, accounting for over 60% of recent SARS-CoV-2 infections. Newly acquired RBD mutations and high transmission advantage over BA.1 urge the investigation of BA.2s immune evasion capability. Here, we show that BA.2 causes strong neutralization resistance, comparable to BA.1, in vaccinated individuals plasma. However, BA.2 displays more severe antibody evasion in BA.1 convalescents, and most prominently, in vaccinated SARS convalescents plasma, suggesting a substantial antigenicity difference between BA.2 and BA.1. To specify, we determined the escaping mutation profiles1,2 of 714 SARS-CoV-2 RBD neutralizing antibodies, including 241 broad sarbecovirus neutralizing antibodies isolated from SARS convalescents, and measured their neutralization efficacy against BA.1, BA.1.1, BA.2. Importantly, BA.2 specifically induces large-scale escape of BA.1/BA.1.1-effective broad sarbecovirus neutralizing antibodies via novel mutations T376A, D405N, and R408S. These sites were highly conserved across sarbecoviruses, suggesting that Omicron BA.2 arose from immune pressure selection instead of zoonotic spillover. Moreover, BA.2 reduces the efficacy of S309 (Sotrovimab)3,4 and broad sarbecovirus neutralizing antibodies targeting the similar epitope region, including BD55-5840. Structural comparisons of BD55-5840 in complexes with BA.1 and BA.2 spike suggest that BA.2 could hinder antibody binding through S371F-induced N343-glycan displacement. Intriguingly, the absence of G446S mutation in BA.2 enabled a proportion of 440-449 linear epitope targeting antibodies to retain neutralizing efficacy, including COV2-2130 (Cilgavimab)5. Together, we showed that BA.2 exhibits distinct antigenicity compared to BA.1 and provided a comprehensive profile of SARS-CoV-2 antibody escaping mutations. Our study offers critical insights into the humoral immune evading mechanism of current and future variants.

17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-954510

RESUMO

Objective:To evaluate the effect of the timing of peripancreatic drainage on the survival outcome of patients with severe acute pancreatitis (SAP).Methods:This retrospective study included 271 patients with SAP admitted to two tertiary hospitals from January 2015 to December 2019. The Acute Physiology and Chronic Health EvaluationⅡ score (APACHEⅡ), Sequential Organ Failure Assessment score (SOFA), computed tomography (CT) grade, peripancreatic drainage situations, and survival outcome of patients were recorded. Patients were divided into the early and non-early peripancreatic catheter drainage groups (EPCD and non-EPCD). The data were analyzed using the Cox proportional hazard model for propensity score matching (PSM) and stratification.Results:After PSM, the 30-day and 90-day risk of death between the EPCD and non-EPCD groups were significantly different (0.134, 95% CI: 0.029-0.576, P=0.007; 0.166, 95% CI: 0.044-0.631, P=0.008, respectively). Furthermore, stratified analysis revealed significant differences in 30-day and 90-day risk of death between the EPCD and non-EPCD groups when the SOFA score was≥4 or the APACHEⅡ score was ≥8. Conclusions:For patients with SAP with SOFA score ≥4 or APACHEⅡ score≥8, early peripancreatic drainage can reduce the risk of death, but CT grading is not helpful for the decision-making of drainage timing in patients with SAP.

18.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-936999

RESUMO

@#BACKGROUND: This study aimed to establish an effective nomogram to predict the survival of heat stroke (HS) based on risk factors. METHODS: This was a retrospective, observational multicenter cohort study. We analyzed patients diagnosed with HS, who were treated between May 1 and September 30, 2018 at 15 tertiary hospitals from 11 cities in Northern China. RESULTS: Among the 175 patients, 32 patients (18.29%) died before hospital discharge. After the univariate analysis, mechanical ventilation, initial mean arterial pressure <70 mmHg, maximum heart rate, lab results on day 1 (white blood cell count, alanine aminotransferase, creatinine), and Glasgow admission prediction score were included in multivariate analysis. Multivariate Cox regression showed that invasive ventilation, initial mean arterial pressure <70 mmHg (1 mmHg=0.133 kPa), and Glasgow admission prediction score were independent risk factors for HS. The nomogram was established for predicting 7-d and 14-d survival in the training cohort. The nomogram exhibited a concordance index (C-index) of 0.880 (95% confidence interval [95% CI] 0.831-0.930) by bootstrapping validation (B=1,000). Furthermore, the nomogram performed better when predicting 14-d survival, compared to 7-d survival. The prognostic index cut-off value was set at 2.085, according to the operating characteristic curve for overall survival prediction. The model showed good calibration ability in the internal and external validation datasets. CONCLUSION: A novel nomogram, integrated with prognostic factors, was proposed; it was highly predictive of the survival in HS patients.

19.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-470392

RESUMO

The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) requires immediate investigation. Here, we used high-throughput yeast display screening1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs and showed that the NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications3-5. Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlap with ACE2-binding motif, are largely escaped by K417N, G446S, E484A, and Q493R. Group E (S309 site)6 and F (CR3022 site)7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, N440K, and S371L. Furthermore, Omicron pseudovirus neutralization showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, the neutralization potency of LY-CoV016/LY-CoV555, REGN10933/REGN10987, AZD1061/AZD8895, and BRII-196 were greatly reduced by Omicron, while VIR-7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron would cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.

20.
Entropy (Basel) ; 23(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573764

RESUMO

We show the properties and characterization of coherence witnesses. We show methods for constructing coherence witnesses for an arbitrary coherent state. We investigate the problem of finding common coherence witnesses for certain class of states. We show that finitely many different witnesses W1,W2,⋯,Wn can detect some common coherent states if and only if ∑i=1ntiWi is still a witnesses for any nonnegative numbers ti(i=1,2,⋯,n). We show coherent states play the role of high-level witnesses. Thus, the common state problem is changed into the question of when different high-level witnesses (coherent states) can detect the same coherence witnesses. Moreover, we show a coherent state and its robust state have no common coherence witness and give a general way to construct optimal coherence witnesses for any comparable states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...