Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834737

RESUMO

Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms. In all cases, mixing of equimolar amounts of the enantiomeric copolymers led to micellar aggregates with a stereocomplexed PLA core and a hydrophilic PEG corona. Yet, when R was an aliphatic heptamethylene unit, temperature-dependent reversible gelation was mainly induced by entanglements of PEG chains at concentrations higher than 5 wt.%. When R was a linker containing cationic amine groups, thermo-irreversible hydrogels were promptly generated at concentrations higher than 20 wt.%. In the latter case, stereocomplexation of the PLA blocks randomly distributed in micellar aggregates is proposed as the major determinant of the gelation process.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Polietilenoglicóis/química , Poliésteres/química , Micelas , Hidrogéis/química
2.
J Mater Chem B ; 9(42): 8718-8738, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34635905

RESUMO

Currently, the therapeutic performance of traditional mono-chemotherapy on cancers remains unsatisfactory because of the tumor heterogeneity and multidrug resistance. In light of intricate tumor structures and distinct tumor microenvironments (TMEs), combinational therapeutic strategies with multiple anticancer drugs from different mechanisms can synergistically optimize the outcomes and concomitantly minimize the adverse effects during the therapy process. Extensive research on polymeric micelles (PMs) for biomedical applications has revealed the growing importance of nanomedicines for cancer therapy in the recent decade. Starting from traditional simple delivery systems, PMs have been extended to multi-faceted therapeutic strategies. Here we review and summarize the most recent advances in combinational therapy based on multifunctional PMs including a combination of multiple anticancer drugs, chemo-gene therapy, chemo-phototherapy and chemo-immunotherapy. The design approaches, action mechanisms and therapeutic applications of these nanodrugs are summarized. In addition, we highlight the opportunities and potential challenges associated with this promising field, which will provide new guidelines for advanced combinational cancer chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Imunoterapia , Neoplasias/terapia , Polímeros/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Humanos , Micelas , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos
3.
J Control Release ; 328: 962-969, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022329
4.
Biomacromolecules ; 21(8): 2966-2982, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32568525

RESUMO

Small interfering RNAs (siRNAs) have recently emerged as a new class of biopharmaceuticals for the treatment of various diseases, including genetic diseases, viral infections, heritable disorders, and most prominently, cancer. However, clinical applications of siRNA-based therapeutics through intravenous administration have been limited due to their rapid degradation and renal clearance, poor cellular uptake, low cytoplasmic release by escaping endocytic uptake, and off-target effects. The success of siRNA-based therapeutics depends upon the design and creation of efficient delivery vectors that should be able to protect siRNA from in vivo degradation and specifically deliver siRNA to cytosol of target cells. Over the past decade, myriad types of carrier systems composed of cationic polymers have been designed for delivery of siRNA to tumor cells. In this review, we overview recent advances in siRNA delivery by using these promising nonviral carrier systems in diverse approaches to overcome the delivery hindrances and provide valuable understanding to direct the future design of siRNA delivery carriers.


Assuntos
Neoplasias , Polímeros , Humanos , Neoplasias/genética , Neoplasias/terapia , RNA Interferente Pequeno/genética
6.
Biomater Sci ; 7(7): 2749-2758, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30997445

RESUMO

Combining chemotherapy and immunotherapy has been considered as an attractive approach to improve cancer therapy. Here we prepared folated PVA-based nanogels for the simultaneous delivery of docetaxel (DTX) and the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor NLG919 (N9) for enhancing cancer chemo-immunotherapy. FDA-approved poly(vinyl alcohol) (PVA) with good biocompatibility was modified with vinyl ether acrylate (VEA) groups for UV-crosslinking and acidic degradation. Carboxyl groups were introduced via modification with succinic anhydride for improved drug loading and folic acid (FA) ligands were incorporated for tumor targeting. UV-crosslinked folated PVA nanogels were efficiently taken up by tumor cells followed by endo/lysosomal pH-triggered intracellular drug release, which induced significant cytotoxicity towards 4T1 breast cancer cells in vitro. DTX and N9 co-loaded PVA nanogels exhibited a much higher antitumor efficiency in 4T1 mouse breast cancer models in vivo as compared to the free drug controls. The drug-laden nanogels not only directly killed the tumor cells by DTX, but also induced immunogenic cell death (ICD) promoting intratumoral accumulation of cytotoxic T lymphocytes, and further combining with N9 elevated the intratumoral infiltration of CD8+ T cells and NK cells and inhibited the infiltration of MDSCs, downregulating IDO1-mediated immunosuppression.


Assuntos
Docetaxel/química , Inibidores Enzimáticos/química , Ácido Fólico/química , Imidazóis/química , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Isoindóis/química , Nanopartículas/química , Animais , Transporte Biológico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Inibidores Enzimáticos/farmacologia , Ácido Fólico/metabolismo , Concentração de Íons de Hidrogênio , Imidazóis/farmacologia , Isoindóis/farmacologia , Camundongos , Álcool de Polivinil/química
7.
J Control Release ; 290: 11-27, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30290243

RESUMO

The advancement of tissue and cell-specific drug delivery systems is a key to precision cancer therapy. Peptides, with easy synthesis, low immunogenicity and biological functions closely mimicking or surpassing natural proteins, have been actively engineered and explored to provide nanomedicines with the ability to overcome various extracellular and intracellular delivery barriers ranging from phagocytic clearance in the circulation, low tumor penetration, poor cancer cell selectivity, inferior cell penetration, to endosomal entrapment as well as poor blood brain barrier permeation for brain cancer therapy. Anti-tumor studies with peptide-decorated polymeric nanomedicines are currently in the experimental stage. Most of the reported peptide-directed polymeric nanomedicines do have a rather complex design requiring a multi-step reproducible fabrication process. Moreover, many of the proposed peptide-decorated polymeric nanomedicines are still not able to effectively overcome the drug delivery cascade barriers. Consequently, in order to facilitate clinical translation the complexity of the systems has to be reduced, while maintaining the added functions after the introduction of the different peptides and further progress has to be made in passing the various drug delivery barriers. In this review, we give an overview of the rational design, development and preclinical performance of peptide-decorated polymeric nanomedicines, and further discuss their challenges and future perspectives as a next generation cancer treatment modality.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos/administração & dosagem , Polímeros/administração & dosagem , Animais , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Medicina de Precisão
8.
Expert Opin Drug Deliv ; 15(7): 703-716, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29976103

RESUMO

INTRODUCTION: Bioresponsive nanogels with a crosslinked three-dimensional structure and an aqueous environment that undergo physical or chemical changes including swelling and dissociation in response to biological signals such as mild acidity, hyperthermia, enzymes, reducing agents, reactive oxygen species (ROS), and adenosine-5'-triphosphate (ATP) present in tumor microenvironments or inside cancer cells have emerged as an appealing platform for targeted drug delivery and cancer therapy. AREAS COVERED: This review highlights recent designs and development of bioresponsive nanogels for facile loading and triggered release of chemotherapeutics and biotherapeutics. The in vitro and in vivo antitumor performances of drug-loaded nanogels are discussed. EXPERT OPINION: Bioresponsive nanogels with an excellent stability and safety profile as well as fast response to biological signals are unique systems that mediate efficient and site-specific delivery of anticancer drugs, in particular macromolecular drugs like proteins, siRNA and DNA, leading to significantly enhanced tumor therapy compared with the non-responsive counterparts. Future research has to be directed to the development of simple, tumor-targeted and bioresponsive multifunctional nanogels, which can be either constructed from natural polymers with intrinsic targeting ability or functionalized with targeting ligands. We anticipate that rationally designed nanotherapeutics based on bioresponsive nanogels will become available for future clinical cancer treatment. ABBREVIATIONS: AIE, aggregation-induced emission; ATP, adenosine-5'-triphosphate; ATRP, atom transfer radical polymerization; BSA, bovine serum albumin; CBA, cystamine bisacrylamide; CC, Cytochrome C; CDDP, cisplatin; CT, computed tomography; DC, dendritic cell; DiI, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; DOX, doxorubicin; dPG, dendritic polyglycerol; DTT, dithiothreitol; EAMA, 2-(N,N-diethylamino)ethyl methacrylate; EPR, enhanced permeability and retention; GrB, granzyme B; GSH, glutathione tripeptide; HA, hyaluronic acid; HAase, hyaluronidases; HCPT, 10-Hydroxycamptothecin; HEP, heparin; HPMC, hydroxypropylmethylcellulose; LBL, layer-by-layer; MTX, methotrexate; NCA, N-carboxyanhydride; OVA, ovalbumin; PAH, poly(allyl amine hydrochloride); PBA, phenylboronic acid; PCL, polycaprolactone; PDEAEMA, poly(2-diethylaminoethyl methacrylate); PDGF, platelet derived growth factor; PDPA, poly(2-(diisopropylamino)ethyl methacrylate); PDS, pyridyldisulfide; PEG, poly(ethylene glycol); PEGMA, polyethyleneglycol methacrylate; PEI, polyethyleneimine; PHEA, poly(hydroxyethyl acrylate); PHEMA, poly(2-(hydroxyethyl) methacrylate; PNIPAM, poly(N-isopropylacrylamide); PMAA, poly(methacrylic acid); PPDSMA, poly(2-(pyridyldisulfide)ethyl methacrylate); PTX, paclitaxel; PVA, poly(vinyl alcohol); QD, quantum dot; RAFT, reversible addition-fragmentation chain transfer; RGD, Arg-Gly-Asp peptide; ROP, ring-opening polymerization; ROS, reactive oxygen species; TMZ, temozolomide; TRAIL, tumor necrosis factor-related apoptosis inducing ligand; VEGF, vascular endothelial growth factor.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Humanos
9.
J Control Release ; 278: 1-8, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29596873

RESUMO

Glioma is a highly challenging human malignancy as drugs typically exhibit a low blood-brain barrier (BBB) permeability as well as poor glioma selectivity and penetration. Here, we report that tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides, Angiopep-2 and TAT, enable a highly efficacious and specific anti-glioma chemotherapy. Interestingly, tandem nanomicelles with 20 mol% Angiopep-2 and 10 mol% TAT linked via long and short poly(ethylene glycol)s, respectively, while maintaining a high glioma cell selectivity display markedly enhanced BBB permeation, glioma accumulation and penetration, and glioma cell uptake. We further show that docetaxel-loaded tandem nanomicelles have a long blood circulation time in mice and significantly better inhibit orthotopic U87MG human glioma than the corresponding Angiopep-2 single peptide-functionalized control, leading to an improved survival rate with little adverse effects. These tandem nanomicelles uniquely combining brain tumor-targeting and cell-penetrating functions provide a novel and effective strategy for targeted glioma therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Docetaxel/administração & dosagem , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Preparações de Ação Retardada , Docetaxel/farmacologia , Docetaxel/toxicidade , Feminino , Produtos do Gene tat/química , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanopartículas , Peptídeos/química , Polietilenoglicóis/química , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Chemphyschem ; 19(16): 2085-2092, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29436757

RESUMO

Photo-crosslinkable poly(trimethylene carbonate) (PTMC) macromers were used to fabricate microstructured surfaces. Microstructured PTMC surfaces were obtained by hot embossing the macromer against structured silicon masters and subsequent photo-crosslinking, resulting in network formation. The microstructures of the master could be precisely replicated, limiting the shrinkage. Microstructured PTMC was investigated for use in two different applications: as stamping material to transfer a model protein to another surface and as structured substrate for cell culture. Using the flexible and elastic materials as stamps, bovine serum albumin labelled with fluorescein isothiocyanate was patterned on glass surfaces. In cell culture experiments, the behavior of human mesenchymal stem cells on nonstructured and microstructured PTMC surfaces was investigated. The cells strongly adhered to the PTMC surfaces and proliferated well. Compared to poly(dimethylsiloxane) (PDMS), which is commonly used in soft lithography, the PTMC networks offer significant advantages. They show better compatibility with cells, are biodegradable, and have much better mechanical properties. Both materials are transparent, flexible, and elastic at room temperature, but the tear resistance of PTMC networks is much higher than that of PDMS. Thus, PTMC might be an alternative material to PDMS in the fields of biology, medicine, and tissue engineering, in which microfabricated devices are increasingly being applied.


Assuntos
Reagentes de Ligações Cruzadas/química , Dimetilpolisiloxanos/metabolismo , Dioxanos/química , Polímeros/química , Animais , Bovinos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Mesenquimais/química , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Soroalbumina Bovina/química , Propriedades de Superfície , Engenharia Tecidual
11.
J Mater Chem B ; 6(19): 3040-3047, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254339

RESUMO

Future cancer therapy relies on the development of simple, selective and bioresponsive nanomedicines. Herein, we report that reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate) micelles (HA-CCMs) can be easily synthesized and achieve efficient CD44-mediated delivery and triggered cytoplasmic release of docetaxel (DTX) to MDA-MB-231 human triple negative breast tumor in vivo. DTX-loaded HA-CCMs exhibited a favorable size of 85 nm, low drug leakage and glutathione-responsive DTX release. HA-CCMs were efficiently taken up by CD44-overexpressing MDA-MB-231 cells as indicated by flow cytometry. DTX-loaded HA-CCMs induced selective apoptotic activity toward MDA-MB-231 cells in vitro. Notably, over 7-fold longer blood circulation time and 4-fold stronger tumor accumulation were observed for DTX-loaded HA-CCMs compared to free DTX. Cy5-labeled HA-CCMs revealed deep tumor penetration at 6 h post injection. DTX-loaded HA-CCMs were shown to effectively suppress the progression of MDA-MB-231 tumor and significantly extend mice survival time. These hyaluronic acid-shelled and disulfide-crosslinked micelles with great simplicity and selectivity are highly promising for treating various CD44-overexpressing cancers.

12.
ACS Appl Mater Interfaces ; 9(41): 35651-35663, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28952305

RESUMO

The application of cell-penetrating peptides like TAT for in vivo targeted delivery is limited because the penetration behavior is not cell-specific. Herein, we designed cRGD and TAT comodified cross-linkable micelles (cRGD/TAT CMs), in which the TAT peptide was shielded by relatively long poly(ethylene glycol) (PEG) chains. Docetaxel (DTX)-loaded cRGD/TAT CMs were very stable with minimal drug leakage under physiological conditions, whereas rapid DTX release took place in a reductive environment. Flow cytometry showed that the cRGD/TAT CMs with molar ratios of 20% cRGD and 10% TAT (cRGD20/TAT10 CMs) were selectively and efficiently taken up by ανß3-overexpressing U87MG glioma cells, with 8.3-fold and 18.3-fold higher uptake than cRGD20 CMs and PEG CMs, respectively. DTX-loaded cRGD20/TAT10 CMs exhibited a high cytotoxicity in U87MG cells, leading to rapid apoptosis of the tumor cells. Uptake mechanism studies revealed that cRGD20/TAT10 CMs mainly employed the caveolae-mediated endocytotic pathway and efficiently escaped from the lysosomes. Notably, cRGD20/TAT10 CMs had a long circulating time of 6.25 h in vivo, due to cross-linking of the micelles and shielding of the TAT peptide. Moreover, DTX-loaded cRGD20/TAT10 CMs exhibited a significantly higher accumulation and deeper penetration in subcutaneous U87MG glioma tissue compared to cRGD20 CMs and PEG CMs, leading to superior antitumor efficacy in vivo. Therefore, this dual-ligand strategy provides an effective way to realize tumor-specific penetration and inhibition.


Assuntos
Docetaxel/química , Antineoplásicos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Micelas , Polietilenoglicóis , Taxoides
14.
J Control Release ; 250: 9-19, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28163212

RESUMO

Slow drug release at the tumor tissue and poor tumor penetration are two big challenges for the successful application of nanosystems in tumor therapy. Here, we report that a high concentration of the natural reducing agent vitamin C (VC) triggers rapid extracellular PTX release from PTX-loaded shell-sheddable PEG-SS-PCL micelles (SSM) in tumors in vivo. An in vivo tolerance study showed that VC at a blood concentration of 40mM had little toxicity to nude mice. Notably, SSM rapidly disassembled and released the payloads (Cy5 or PTX) in response to 40mM VC. In vivo near-infrared imaging of tumor-bearing mice showed that with post-injection of VC to establish a blood concentration of 40mM, Cy5 was quickly released from the micelles and diffused deep into the tumor tissue. Biodistribution studies revealed that 6h after the injection of PTX-loaded micelles the highest tumor accumulation was reached, which was set as the injection time for VC. The antitumor efficacy of a combination therapy of PTX-loaded micelles and VC was evaluated in both MCF-7 and U87MG tumor models. In both tumor models, single injections of VC didn't show any antitumor effect, while sequential administration of PTX-loaded SSM and VC exhibited significantly higher tumor inhibition effects and better survival rates as compared to single treatment with PTX-loaded micelles, demonstrating that exogenous administration of VC effectively triggered the release of PTX from SSM in vivo. The combination of reduction-sensitive nanomedicines with exogenous VC appears a promising approach to achieve potent treatment of malignant tumors.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Paclitaxel/farmacologia , Poliésteres/química , Polietilenoglicóis/química , Succinimidas/química , Animais , Antineoplásicos/química , Ácido Ascórbico/química , Neoplasias da Mama/tratamento farmacológico , Carbocianinas/química , Linhagem Celular Tumoral , Preparações de Ação Retardada , Portadores de Fármacos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Transplante de Neoplasias , Oxirredução , Paclitaxel/química , Propriedades de Superfície
15.
J Control Release ; 244(Pt B): 229-239, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27568289

RESUMO

Nanotheranostics is a rapidly growing field combining disease diagnosis and therapy, which ultimately may add in the development of 'personalized medicine'. Here, we designed and developed bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels (HAI-NGs) for targeted X-ray computed tomography (CT) imaging and chemotherapy of MCF-7 human breast tumors. HAI-NGs were obtained with a small size of ca. 90nm, bright green fluoresence and high serum stability from hyaluronic acid-cystamine-tetrazole and reductively degradable polyiodixanol-methacrylate via nanoprecipitation and a photo-click crosslinking reaction. Notably, paclitaxel (PTX)-loaded HAI-NGs showed a fast glutathione-responsive drug release. Confocal microscopy displayed efficient uptake of HAI-NGs by CD44 overexpressing MCF-7 cells via a receptor-mediated mechanism. MTT assays revealed that HAI-NGs were nontoxic to MCF-7 cells even at a high concentration of 1mg/mL whereas PTX-loaded HAI-NGs exhibited strong inhibition of MCF-7 cells. The in vivo pharmcokinetics, near-infrared imaging and biodistribution studies revealed that HAI-NGs significantly prolonged the blood circulation time and enhanced tumor accumulation of PTX. Interestingly, significantly enhanced CT imaging was observed for MCF-7 breast tumors in nude mice via either intratumoral or intravenous injection of HAI-NGs as compared to iodixanol. HAI-NGs fluoresence was distributed thoughout the whole tumor indicating deep tumor penetration. PTX-loaded HAI-NGs showed effective suppression of tumor growth with little systemic toxicity. HAI-NGs appear as a "smart" theranostic nanoplatform for the treatment of CD44 positive tumors.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama , Portadores de Fármacos/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Ácidos Tri-Iodobenzoicos/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/uso terapêutico , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/uso terapêutico , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Tomografia Computadorizada por Raios X , Ácidos Tri-Iodobenzoicos/química , Ácidos Tri-Iodobenzoicos/farmacocinética , Ácidos Tri-Iodobenzoicos/uso terapêutico , Carga Tumoral/efeitos dos fármacos
16.
J Control Release ; 233: 29-38, 2016 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27178807

RESUMO

Biodegradable micelles are one of the most studied systems for the delivery of hydrophobic anticancer drugs. Their therapeutic efficacy in vivo is, however, suboptimal, partly due to poor tumor cell uptake as well as slow intracellular drug release. Here, we show that cRGD-functionalized intracellularly shell-sheddable biodegradable PEG-SS-PCL micelles mediate enhanced doxorubicin (DOX) delivery to U87MG glioma xenografts in vivo, resulting in significantly improved tumor growth inhibition as compared to reduction-insensitive cRGD/PEG-PCL controls. cRGD/PEG-SS-PCL micelles revealed a small size of ca. 61nm, a decent DOX loading of 14.9wt%, and triggered drug release in a reductive environment (10mM glutathione). Flow cytometry, confocal microscopy, and MTT assays demonstrated that cRGD/PEG-SS-PCL micelles with a cRGD ligand density of 20% efficiently delivered and released DOX into αvß3 integrin overexpressing U87MG cells. The in vivo pharmacokinetics studies displayed that DOX-loaded cRGD20/PEG-SS-PCL micelles had a prolonged elimination half-life time of 3.51h, which was comparable to that of cRGD20/PEG-PCL counterparts, indicating that disulfide bonds in the PEG-SS-PCL micelles are stable in the circulation. Notably, in vivo imaging and biodistribution studies in U87MG glioma xenografts showed that cRGD20/PEG-SS-PCL micelles led to efficient accumulation as well as fast drug release in the tumor. The therapeutic outcomes demonstrated that DOX-loaded cRGD20/PEG-SS-PCL micelles exhibited little side effects and superior tumor growth inhibition as compared to non-targeting PEG-SS-PCL and reduction-insensitive cRGD20/PEG-PCL counterparts. The reduction-sensitive shell-sheddable biodegradable micelles have appeared as a fascinating platform for targeted tumor chemotherapy.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Óxido de Etileno/administração & dosagem , Glioma/tratamento farmacológico , Lactonas/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Óxido de Etileno/farmacocinética , Óxido de Etileno/uso terapêutico , Feminino , Glioma/metabolismo , Humanos , Lactonas/farmacocinética , Lactonas/uso terapêutico , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Oxirredução , Peptídeos Cíclicos/farmacocinética , Peptídeos Cíclicos/uso terapêutico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Macromol Biosci ; 16(4): 619-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26663734

RESUMO

A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier.


Assuntos
Agmatina/química , Amino Álcoois/química , Cistamina/análogos & derivados , Lactatos/química , Transfecção/métodos , Agmatina/farmacologia , Amino Álcoois/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cistamina/química , Cistamina/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Lactatos/farmacologia , Luciferases/genética , Luciferases/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxirredução , Polimerização
18.
Biomater Sci ; 3(7): 1134-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26221946

RESUMO

Novel reductively degradable α-amino acid-based poly(ester amide)-graft-galactose (SSPEA-Gal) copolymers were designed and developed to form smart nano-vehicles for active hepatoma-targeting doxorubicin (DOX) delivery. SSPEA-Gal copolymers were readily synthesized via solution polycondensation reaction of di-p-toluenesulfonic acid salts of bis-l-phenylalanine 2,2-thiodiethanol diester and bis-vinyl sulfone functionalized cysteine hexanediol diester with dinitrophenyl ester of adipic acid, followed by conjugating with thiol-functionalized galactose (Gal-SH) via the Michael addition reaction. SSPEA-Gal formed unimodal nanoparticles (PDI = 0.10 - 0.12) in water, in which average particle sizes decreased from 138 to 91 nm with increasing Gal contents from 31.6 wt% to 42.5 wt%. Notably, in vitro drug release studies showed that over 80% DOX was released from SSPEA-Gal nanoparticles within 12 h under an intracellular mimicking reductive conditions, while low DOX release (<20%) was observed for reduction-insensitive PEA-Gal nanoparticles under otherwise the same conditions and SSPEA-Gal nanoparticles under non-reductive conditions. Notably, SSPEA-Gal nanoparticles exhibited high specificity to asialoglycoprotein receptor (ASGP-R)-overexpressing HepG2 cells. MTT assays using HepG2 cells showed that DOX-loaded SSPEA-Gal had a low half maximal inhibitory concentration (IC50) of 1.37 µg mL(-1), approaching that of free DOX. Flow cytometry and confocal laser scanning microscopy studies confirmed the efficient uptake of DOX-loaded SSPEA-Gal nanoparticles by HepG2 cells as well as fast intracellular DOX release. Importantly, SSPEA-Gal and PEA-Gal nanoparticles were non-cytotoxic to HepG2 and MCF-7 cells up to a tested concentration of 1.0 mg mL(-1). These tumor-targeting and reduction-responsive degradable nanoparticles have appeared as an interesting multi-functional platform for advanced drug delivery.


Assuntos
Receptor de Asialoglicoproteína/química , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Galactose/farmacologia , Nanopartículas/química , Fenilalanina/química , Poliaminas/química , Poliésteres/química , Polímeros/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/metabolismo , Doxorrubicina/administração & dosagem , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Galactose/química , Células Hep G2 , Humanos , Células MCF-7 , Micelas , Fenilalanina/farmacologia , Polímeros/química
19.
J Control Release ; 210: 125-33, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25987525

RESUMO

It is still a major challenge for targeted cancer chemotherapy to design stable biodegradable micellar drug delivery systems which show a rapid and complete intracellular drug release. Here, reversibly core-crosslinked pH-responsive biodegradable micelles were developed based on poly(ethylene glycol)-poly(2,4,6-trimethoxybenzylidene-pentaerythritol carbonate-co-pyridyl disulfide carbonate) [PEG-P(TMBPEC-co-PDSC)] copolymers and investigated for intracellular doxorubicin (DOX) release. PEG-P(TMBPEC-co-PDSC) copolymers formed micelles with a small size of 58.6nm were readily crosslinked by the addition of dithiothreitol (DTT). Notably, in vitro release studies showed that under physiological conditions only ca. 19.9% of DOX was released from the reversibly crosslinked micelles in 24h at a low micelle concentration of 40µg/mL. The release of DOX was accelerated at pH5.0 or in the presence of 10mM glutathione (GSH) at pH7.4, in which 64.2% and 44.1% of DOX was released, respectively, in 24h. The drug release was further boosted at pH5.0 and 10mM GSH, with 98.8% of DOX released in 12h. Moreover, DOX release was also facilitated by a 4h incubation at pH5.0 followed by incubation at pH7.4 with 10mM GSH. Confocal microscopy indicated that DOX was delivered and released into the nuclei of RAW 264.7 cells following a 12h incubation with DOX-loaded reversibly crosslinked micelles. MTT assays revealed that DOX-loaded reversibly crosslinked micelles had much higher antitumor activity than irreversibly crosslinked controls, with low IC50 values of 1.65 and 1.14µg/mL for HeLa and RAW 264.7 cells, respectively, following a 48h incubation. The blank crosslinked micelles had a low cytotoxicity of up to a concentration of 0.8mg/mL. These reversibly crosslinked pH-sensitive biodegradable micelles with superior extracellular stability but activated intracellular drug release provide a novel platform for tumor-targeting drug delivery.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Micelas , Animais , Antibióticos Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Liberação Controlada de Fármacos , Glutationa/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...