Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(13): 3441-3450, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006676

RESUMO

Mechanically flexible single crystals of molecular materials offer potential for a multitude of new directions in advanced materials design. Before the full potential of such materials can be exploited, insight into their mechanisms of action must be better understood. Such insight can be only obtained through synergistic use of advanced experimentation and simulation. We herein report the first detailed mechanistic study of elasto-plastic flexibility in a molecular solid. An atomistic origin for this mechanical behaviour is proposed through a combination of atomic force microscopy, µ-focus synchrotron X-ray diffraction, Raman spectroscopy, ab initio simulation, and computed elastic tensors. Our findings suggest that elastic and plastic bending are intimately linked and result from extensions of the same molecular deformations. The proposed mechanism bridges the gap between contested mechanisms, suggesting its applicability as a general mechanism for elastic and plastic bending in organic molecular crystals.

2.
Cryst Growth Des ; 22(7): 4260-4267, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35818385

RESUMO

Mechanochemistry has become a sustainable and attractive cost-effective synthetic technique, largely used within the frame of crystal engineering. Cocrystals, namely, crystalline compounds made of different chemical entities within the same crystal structure, are typically synthesized in bulk via mechanochemistry; however, whereas the macroscopic aspects of grinding are becoming clear, the fundamental principles that underlie mechanochemical cocrystallization at the microscopic level remain poorly understood. Time-resolved in situ (TRIS) monitoring approaches have opened the door to exceptional detail regarding mechanochemical reactions. We here report a clear example of cocrystallization between two solid coformers that proceeds through the formation of a metastable low melting binary eutectic phase. The overall cocrystallization process has been monitored by time-resolved in situ (TRIS) synchrotron X-ray powder diffraction with a customized ball milling setup, currently available at µSpot beamline at BESSY-II, Helmholtz-Zentrum Berlin. The binary system and the low melting eutectic phase were further characterized via DSC, HSM, and VT-XRPD.

3.
Angew Chem Int Ed Engl ; 59(14): 5557-5561, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31837270

RESUMO

Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(µ-Cl)2 (3,5-dichloropyridine)2 ]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 180°. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material.

4.
ChemistryOpen ; 8(7): 1012-1019, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31367509

RESUMO

Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...