Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Oncol ; 13: 1200436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746303

RESUMO

Introduction: We have previously shown that an intratumoral (IT) injection of the hu14.18-IL2 immunocytokine (IC), an anti-GD2 antibody linked to interleukin 2, can serve as an in situ vaccine and synergize with local radiotherapy (RT) to induce T cell-mediated antitumor effects. We hypothesized that cyclophosphamide (CY), a chemotherapeutic agent capable of depleting T regulatory cells (Tregs), would augment in situ vaccination. GD2+ B78 mouse melanoma cells were injected intradermally in syngeneic C57BL/6 mice. Methods: Treatments with RT (12Gy) and/or CY (100 mg/kg i.p.) started when tumors reached 100-300 mm3 (day 0 of treatment), followed by five daily injections of IT-IC (25 mcg) on days 5-9. Tumor growth and survival were followed. In addition, tumors were analyzed by flow cytometry. Results: Similar to RT, CY enhanced the antitumor effect of IC. The strongest antitumor effect was achieved when CY, RT and IC were combined, as compared to combinations of IC+RT or IC+CY. Flow cytometric analyses showed that the combined treatment with CY, RT and IC decreased Tregs and increased the ratio of CD8+ cells/Tregs within the tumors. Moreover, in mice bearing two separate tumors, the combination of RT and IT-IC delivered to one tumor, together with systemic CY, led to a systemic antitumor effect detected as shrinkage of the tumor not treated directly with RT and IT-IC. Cured mice developed immunological memory as they were able to reject B78 tumor rechallenge. Conclusion: Taken together, these preclinical results show that CY can augment the antitumor efficacy of IT- IC, given alone or in combination with local RT, suggesting potential benefit in clinical testing of these combinations.

2.
Reproduction ; 165(6): 617-628, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068140

RESUMO

In brief: Developing novel therapies to cure and manage endometriosis is a major unmet need that will benefit over 180 million women worldwide. Results from the current study suggest that inhibitors of oxidative phosphorylation may serve as novel agents for the treatment of endometriosis. Abstract: Current therapeutic strategies for endometriosis focus on symptom management and are not curative. Here, we provide evidence supporting the inhibition of oxidative phosphorylation (OXPHOS) as a novel treatment strategy for endometriosis. Additionally, we report an organotypic organ-on-a-chip luminal model for endometriosis. The OXPHOS inhibitors, curcumin, plumbagin, and the FDA-approved anti-malarial agent, atovaquone, were tested against the endometriosis cell line, 12Z, in conventional as well as the new organotypic model. The results suggest that all three compounds inhibit proliferation and cause cell death of the endometriotic cells by inhibiting OXPHOS and causing an increase in intracellular oxygen radicals. The oxidative stress mediated by curcumin, plumbagin, and atovaquone causes DNA double-strand breaks as indicated by the elevation of phospho-γH2Ax. Mitochondrial energetics shows a significant decrease in oxygen consumption in 12Z cells. These experiments also highlight differences in the mechanism of action as curcumin and plumbagin inhibit complex I whereas atovaquone blocks complexes I, II, and III. Real-time assessment of cells in the lumen model showed inhibition of migration in response to the test compounds. Additionally, using two-photon lifetime imaging, we demonstrate that the 12Z cells in the lumen show decreased redox ratio (NAD(P)H/FAD) and lower fluorescence lifetime of NAD(P)H in the treated cells confirming major metabolic changes in response to inhibition of mitochondrial electron transport. The robust chemotoxic responses observed with atovaquone suggest that this anti-malarial agent may be repurposed for the effective treatment of endometriosis.


Assuntos
Antimaláricos , Antineoplásicos , Curcumina , Endometriose , Feminino , Humanos , Curcumina/farmacologia , Atovaquona/farmacologia , Fosforilação Oxidativa , Endometriose/tratamento farmacológico , NAD , Proliferação de Células
3.
Cancer Immunol Immunother ; 72(7): 2459-2471, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37016127

RESUMO

BACKGROUND: The in-situ vaccine using CpG oligodeoxynucleotide combined with OX40 agonist antibody (CpG + OX40) has been shown to be an effective therapy activating an anti-tumor T cell response in certain settings. The roles of tumor volume, tumor model, and the addition of checkpoint blockade in the efficacy of CpG + OX40 in-situ vaccination remains unknown. METHODS: Mice bearing flank tumors (B78 melanoma or A20 lymphoma) were treated with combinations of CpG, OX40, and anti-CTLA-4. Tumor growth and survival were monitored. In vivo T cell depletion, tumor cell phenotype, and tumor infiltrating lymphocyte (TIL) studies were performed. Tumor cell sensitivity to CpG and macrophages were evaluated in vitro. RESULTS: As tumor volumes increased in the B78 (one-tumor) and A20 (one-tumor or two-tumor) models, the anti-tumor efficacy of the in-situ vaccine decreased. In vitro, CpG had a direct effect on A20 proliferation and phenotype and an indirect effect on B78 proliferation via macrophage activation. As A20 tumors progressed in vivo, tumor cell phenotype changed, and T cells became more involved in the local CpG + OX40 mediated anti-tumor response. In mice with larger tumors that were poorly responsive to CpG + OX40, the addition of anti-CTLA-4 enhanced the anti-tumor efficacy in the A20 but not B78 models. CONCLUSIONS: Increased tumor volume negatively impacts the anti-tumor capability of CpG + OX40 in-situ vaccine. The addition of checkpoint blockade augmented the efficacy of CpG + OX40 in the A20 but not B78 model. These results highlight the importance of considering multiple preclinical model conditions when assessing the efficacy of cancer immunotherapy regimens and their translation to clinical testing.


Assuntos
Linfoma , Melanoma , Vacinas , Camundongos , Animais , Linfócitos T , Melanoma/genética , Macrófagos , Receptores OX40 , Imunoterapia/métodos
4.
Cancers (Basel) ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35565426

RESUMO

Oxidative phosphorylation is an active metabolic pathway in cancer. Atovaquone is an oral medication that inhibits oxidative phosphorylation and is FDA-approved for the treatment of malaria. We investigated its potential anti-cancer properties by measuring cell proliferation in 2D culture. The clinical formulation of atovaquone, Mepron, was given to mice with ovarian cancers to monitor its effects on tumor and ascites. Patient-derived cancer stem-like cells and spheroids implanted in NSG mice were treated with atovaquone. Atovaquone inhibited the proliferation of cancer cells and ovarian cancer growth in vitro and in vivo. The effect of atovaquone on oxygen radicals was determined using flow and imaging cytometry. The oxygen consumption rate (OCR) in adherent cells was measured using a Seahorse XFe96 Extracellular Flux Analyzer. Oxygen consumption and ATP production were inhibited by atovaquone. Imaging cytometry indicated that the majority of the oxygen radical flux triggered by atovaquone occurred in the mitochondria. Atovaquone decreased the viability of patient-derived cancer stem-like cells and spheroids implanted in NSG mice. NMR metabolomics showed shifts in glycolysis, citric acid cycle, electron transport chain, phosphotransfer, and metabolism following atovaquone treatment. Our studies provide the mechanistic understanding and preclinical data to support the further investigation of atovaquone's potential as a gynecologic cancer therapeutic.

5.
Front Immunol ; 12: 763888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868010

RESUMO

Introduction: Combining CpG oligodeoxynucleotides with anti-OX40 agonist antibody (CpG+OX40) is able to generate an effective in situ vaccine in some tumor models, including the A20 lymphoma model. Immunologically "cold" tumors, which are typically less responsive to immunotherapy, are characterized by few tumor infiltrating lymphocytes (TILs), low mutation burden, and limited neoantigen expression. Radiation therapy (RT) can change the tumor microenvironment (TME) of an immunologically "cold" tumor. This study investigated the effect of combining RT with the in situ vaccine CpG+OX40 in immunologically "cold" tumor models. Methods: Mice bearing flank tumors (A20 lymphoma, B78 melanoma or 4T1 breast cancer) were treated with combinations of local RT, CpG, and/or OX40, and response to treatment was monitored. Flow cytometry and quantitative polymerase chain reaction (qPCR) experiments were conducted to study differences in the TME, secondary lymphoid organs, and immune activation after treatment. Results: An in situ vaccine regimen of CpG+OX40, which was effective in the A20 model, did not significantly improve tumor response or survival in the "cold" B78 and 4T1 models, as tested here. In both models, treatment with RT prior to CpG+OX40 enabled a local response to this in situ vaccine, significantly improving the anti-tumor response and survival compared to RT alone or CpG+OX40 alone. RT increased OX40 expression on tumor infiltrating CD4+ non-regulatory T cells. RT+CpG+OX40 increased the ratio of tumor-infiltrating effector T cells to T regulatory cells and significantly increased CD4+ and CD8+ T cell activation in the tumor draining lymph node (TDLN) and spleen. Conclusion: RT significantly improves the local anti-tumor effect of the in situ vaccine CpG+OX40 in immunologically "cold", solid, murine tumor models where RT or CpG+OX40 alone fail to stimulate tumor regression.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias Experimentais/radioterapia , Oligodesoxirribonucleotídeos/uso terapêutico , Receptores OX40/imunologia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Feminino , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
6.
Am J Reprod Immunol ; 86(4): e13469, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34022086

RESUMO

OBJECTIVE: Treatment of high-grade serous ovarian cancer (HGSOC) will benefit from early detection of cancer. Here, we provide proof-of-concept data supporting the hypothesis that circulating immune cells, because of their early recognition of tumors and the tumor microenvironment, can be considered for biomarker discovery. METHODS: Longitudinal blood samples from C57BL/6 mice bearing syngeneic ovarian tumors and peripheral blood mononuclear cells (PBMC) from healthy postmenopausal women and newly diagnosed for HGSOC patients were subjected to RNASeq. The results from human immune cells were validated using Affymetrix microarrays. Differentially expressed transcripts in immune cells from tumor-bearing mice and HGSOC patients were compared to matching controls. RESULTS: A total of 1282 transcripts (798 and 484, up- and downregulated, respectively) were differentially expressed in the tumor-bearing mice as compared with controls. Top 100 genes showing longitudinal changes in gene expression 2, 4, 7, and 18 days after tumor implantation were identified. Analysis of the PBMC from healthy post-menopausal women and HGSOC patients identified 4382 differentially expressed genes and 519 of these were validated through Affymetrix microarray analysis. A total of 384 genes, including IL-1R2, CH3L1, Infitm1, FP42, CXC42, Hdc, Spib, and Sema6b, were differentially expressed in the human and mouse datasets. CONCLUSION: The PBMC transcriptome shows longitudinal changes in response to the progressing tumor. Several potential biomarker transcripts were identified in HGSOC patients and mouse models. Monitoring their expression in individual PBMC subsets can serve as additional discriminator for the diagnosis of HGSOC.


Assuntos
Cistadenocarcinoma Seroso/diagnóstico , Neoplasias Ovarianas/diagnóstico , Microambiente Tumoral , Animais , Biomarcadores Tumorais , Linhagem Celular , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Estudo de Prova de Conceito , Transcriptoma
7.
Sci Rep ; 10(1): 19585, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177587

RESUMO

Oxidative stress inhibits Na+/K+-ATPase (NKA), the ion channel that maintains membrane potential. Here, we investigate the role of oxidative stress-mediated by plumbagin and atovaquone in the inhibition of NKA activity. We confirm that plumbagin and atovaquone inhibit the proliferation of three human (OVCAR-3, SKOV-3, and TYKNu) and one mouse (ID8) ovarian cancer cell lines. The oxygen radical scavenger, N-acetylcysteine (NAC), attenuates the chemotoxicity of plumbagin and atovaquone. Whole-cell patch clamping demonstrates that plumbagin and atovaquone inhibit outward and the inward current flowing through NKA in SKOV-3 and OVCAR-3. Although both drugs decrease cellular ATP; providing exogenous ATP (5 mM) in the pipet solution used during patch clamping did not recover NKA activity in the plumbagin or atovaquone treated SKOV-3 and OVCAR-3 cells. However, pretreatment of the cells with NAC completely abrogated the NKA inhibitory activity of plumbagin and atovaquone. Exposure of the SKOV-3 cells to either drug significantly decreases the expression of NKA. We conclude that oxidative stress caused by plumbagin and atovaquone degrades NKA, resulting in the inability to maintain ion transport. Therefore, when evaluating compounds that induce oxidative stress, it is important to consider the contribution of NKA inhibition to their cytotoxic effects on tumor cells.


Assuntos
Atovaquona/farmacologia , Naftoquinonas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Transporte de Íons/efeitos dos fármacos , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Estresse Oxidativo/fisiologia , Técnicas de Patch-Clamp
8.
Am J Reprod Immunol ; 84(3): e13284, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32524661

RESUMO

PROBLEM: We hypothesize that activated peritoneal immune cells can be redirected to target ovarian tumors. Here, we obtain fundamental knowledge of the peritoneal immune environment through deep immunophenotyping of T cells, dendritic cells (DC), and innate lymphoid cells (ILC) of ovarian cancer patients. METHOD OF STUDY: T cells, DC, and ILC from ascites of ovarian cancer patients (n = 15) and peripheral blood of post-menopausal healthy donors (n = 6) were immunophenotyped on a BD Fortessa cytometer using three panels-each composed of 16 antibodies. The data were analyzed manually and by t-SNE/DensVM. CA125 levels were obtained from patient charts. RESULTS: We observed decreased CD3+ T cells and a higher proportion of activated CD4+ and effector memory CD4+ /CD8+ T cells, plasmacytoid DC, CD1c+ and CD141+ myeloid DC and CD56Hi NK cells in ascites. t-SNE/DensVM identified eight T cell, 17 DC, and 17 ILC clusters that were unique in the ascites compared to controls. Hierarchical clustering of cell frequency distinctly segregated the T-cell and ILC clusters from controls. Increased CA125 levels were associated with decreased CD8+ /CD45RA+ /CD45RO- /CCR7- T cells. CONCLUSION: The identified immune clusters serve as the basis for interrogation of the peritoneal immune environment and the development of novel immunologic modalities against ovarian cancer.


Assuntos
Líquido Ascítico/imunologia , Células Dendríticas/imunologia , Linfócitos/imunologia , Neoplasias Ovarianas/imunologia , Adulto , Idoso , Feminino , Humanos , Imunidade Inata , Pessoa de Meia-Idade
9.
J Clin Oncol ; 38(19): 2160-2169, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32343642

RESUMO

PURPOSE: The combination of irinotecan, temozolomide, dintuximab, and granulocyte-macrophage colony-stimulating factor (I/T/DIN/GM-CSF) demonstrated activity in patients with relapsed/refractory neuroblastoma in the randomized Children's Oncology Group ANBL1221 trial. To more accurately assess response rate and toxicity, an expanded cohort was nonrandomly assigned to I/T/DIN/GM-CSF. PATIENTS AND METHODS: Patients were eligible at first relapse or first designation of refractory disease. Oral T and intravenous (IV) irinotecan were administered on days 1 to 5 of 21-day cycles. DIN was administered IV (days 2-5), and GM-CSF was administered subcutaneously (days 6-12). The primary end point was objective response, analyzed on an intent-to-treat basis per the International Neuroblastoma Response Criteria. RESULTS: Seventeen eligible patients were randomly assigned to I/T/DIN/GM-CSF (February 2013 to March 2015); 36 additional patients were nonrandomly assigned to I/T/DIN/GM-CSF (August 2016 to May 2017). Objective (complete or partial) responses were observed in nine (52.9%) of 17 randomly assigned patients (95% CI, 29.2% to 76.7%) and 13 (36.1%) of 36 expansion patients (95% CI, 20.4% to 51.8%). Objective responses were seen in 22 (41.5%) of 53 patients overall (95% CI, 28.2% to 54.8%); stable disease was also observed in 22 of 53. One-year progression-free and overall survival for all patients receiving I/T/DIN/GM-CSF were 67.9% ± 6.4% (95% CI, 55.4% to 80.5%) and 84.9% ± 4.9% (95% CI, 75.3% to 94.6%), respectively. Two patients did not receive protocol therapy and were evaluable for response but not toxicity. Common grade ≥ 3 toxicities were fever/infection (18 [35.3%] of 51), neutropenia (17 [33.3%] of 51), pain (15 [29.4%] of 51), and diarrhea (10 [19.6%] of 51). One patient met protocol-defined criteria for unacceptable toxicity (grade 4 hypoxia). Higher DIN trough levels were associated with response. CONCLUSION: I/T/DIN/GM-CSF has significant antitumor activity in patients with relapsed/refractory neuroblastoma. Study of chemoimmunotherapy in the frontline setting is indicated, as is further evaluation of predictive biomarkers.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Imunoterapia/métodos , Irinotecano/uso terapêutico , Neuroblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Adolescente , Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Criança , Pré-Escolar , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Lactente , Irinotecano/farmacologia , Masculino , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Análise de Sobrevida , Temozolomida/farmacologia
10.
Anal Chem ; 91(20): 12942-12947, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31507162

RESUMO

N-linked glycosylation, featuring various glycoforms, is one of the most common and complex protein post-translational modifications (PTMs) controlling protein structures and biological functions. It has been revealed that abnormal changes of protein N-glycosylation patterns are associated with many diseases. Hence, unraveling the disease-related alteration of glycosylation, especially the glycoforms, is crucial and beneficial to improving our understanding about the pathogenic mechanisms of various diseases. In past decades, given the capability of in situ mapping of biomolecules and their region-specific localizations, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been widely applied to the discovery of potential biomarkers for many diseases. In this study, we coupled a novel subatmospheric pressure (SubAP)/MALDI source with a Q Exactive HF hybrid quadrupole-orbitrap mass spectrometer for in situ imaging of N-linked glycans from formalin-fixed paraffin-embedded (FFPE) tissue sections. The utility of this new platform for N-glycan imaging analysis was demonstrated with a variety of FFPE tissue sections. A total of 55 N-glycans were successfully characterized and visualized from a FFPE mouse brain section. Furthermore, 29 N-glycans with different spatial distribution patterns could be identified from a FFPE mouse ovarian cancer tissue section. High-mannose N-glycans exhibited elevated expression levels in the tumor region, indicating the potential association of this type of N-glycans with tumor progression.


Assuntos
Encéfalo/metabolismo , Formaldeído/química , Neoplasias Ovarianas/metabolismo , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Feminino , Glicosilação , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Fixação de Tecidos
11.
Sci Rep ; 9(1): 11471, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391478

RESUMO

The Na+/K+-ATPase (NKA) complex is the master regulator of membrane potential and a target for anti-cancer therapies. Here, we investigate the effect of drug-induced oxidative stress on NKA activity. The natural product, plumbagin increases oxygen radicals through inhibition of oxidative phosphorylation. As a result, plumbagin treatment results in decreased production of ATP and a rapid increase in intracellular oxygen radicals. We show that plumbagin induces apoptosis in canine cancer cells via oxidative stress. We use this model to test the effect of oxidative stress on NKA activity. Using whole-cell patch-clamp electrophysiology we demonstrate that short-term exposure (4 min) to plumbagin results in 48% decrease in outward current at +50 mV. Even when exogenous ATP was supplied to the cells, plumbagin treatment resulted in 46% inhibition of outward current through NKA at +50 mV. In contrast, when the canine cancer cells were pre-treated with the oxygen radical scavenger, N-acetylcysteine, the NKA inhibitory activity of plumbagin was abrogated. These experiments demonstrate that the oxidative stress-causing agents such as plumbagin and its analogues, are a novel avenue to regulate NKA activity in tumors.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Naftoquinonas/farmacologia , Neoplasias/tratamento farmacológico , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cães , Ensaios de Seleção de Medicamentos Antitumorais , Naftoquinonas/uso terapêutico , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Técnicas de Patch-Clamp , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Oncoimmunology ; 8(3): 1553477, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723584

RESUMO

Immunotherapies against solid tumors face additional challenges compared with hematological cancers. In solid tumors, immune cells and antibodies need to extravasate from vasculature, find the tumor, and migrate through a dense mass of cells. These multiple steps pose significant obstacles for solid tumor immunotherapy and their study has remained difficult using classic in vitro models based on Petri dishes. In this work, a microfluidic model has been developed to study natural killer cell response. The model includes a 3D breast cancer spheroid in a 3D extracellular matrix, and two flanking lumens lined with endothelial cells, replicating key structures and components during the immune response. Natural Killer cells and antibodies targeting the tumor cells were either embedded in the matrix or perfused through the lateral blood vessels. Antibodies that were perfused through the lateral lumens extravasated out of the blood vessels and rapidly diffused through the matrix. However, tumor cell-cell junctions hindered antibody penetration within the spheroid. On the other hand, natural killer cells were able to detect the presence of the tumor spheroid several hundreds of microns away and penetrate the spheroid faster than the antibodies. Once inside the spheroid, natural killer cells were able to destroy tumor cells at the spheroid periphery and, importantly, also at the innermost layers. Finally, the combination of antibody-cytokine conjugates and natural killer cells led to an enhanced cytotoxicity located mostly at the spheroid periphery. Overall, these results demonstrate the utility of the model for informing immunotherapy of solid tumors.

13.
Gynecol Oncol ; 152(3): 618-628, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626487

RESUMO

OBJECTIVE: MUC16, the mucin that contains the CA125 epitopes, suppresses the cytolytic responses of human NK cells and inhibits the efficacy of therapeutic antibodies. Here, we provide further evidence of the regulatory role of MUC16 on human and murine NK cells and macrophages. METHODS: Target cell cytolysis and doublet formation assays were performed to assess effects of MUC16 on human NK cells. The effect of MUC16 on ovarian tumor growth was determined in a mouse model by monitoring survival and ascites formation. Innate immune cells from spleens and peritoneal cavities of mice were isolated and stimulated in vitro with anti-CD40 antibody, lipopolysaccharide and IFN-γ and their ability to cytolyse MUC16 expressing and non-expressing cells was determined. RESULTS: We confirm that MUC16 inhibits cytolysis by human NK cells as well as the formation of NK-tumor conjugates. Mice implanted with MUC16-knockdown OVCAR-3 show >2-fold increase in survival compared to controls. Murine NK cells and macrophages are more efficient at lysing MUC16-knockdown cells. In vitro cytotoxicity assays with NK cells and macrophages isolated from mice stimulated with anti-CD40 antibody showed 2-3-fold increased activity against the MUC16-knockdown cells as compared to matching target cells expressing this mucin. Finally, knockdown of MUC16 increased the susceptibility of cancer cells to ADCC by murine splenocytes. CONCLUSIONS: For the first time, we demonstrate the immunoregulatory effects of MUC16 on murine NK cells and macrophages. Our study implies that the immunoregulatory role of MUC16 on murine NK cells and macrophages should be considered when examining the biology of MUC16 in mouse models.


Assuntos
Antígeno Ca-125/imunologia , Proteínas de Membrana/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias Ovarianas/imunologia
14.
Sci Rep ; 8(1): 1073, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348410

RESUMO

Plumbagin, an anti-cancer agent, is toxic to cells of multiple species. We investigated if plumbagin targets conserved biochemical processes. Plumbagin induced DNA damage and apoptosis in cells of diverse mutational background with comparable potency. A 3-5 fold increase in intracellular oxygen radicals occurred in response to plumbagin. Neutralization of the reactive oxygen species by N-acetylcysteine blocked apoptosis, indicating a central role for oxidative stress in plumbagin-mediated cell death. Plumbagin docks in the ubiquinone binding sites (Q0 and Qi) of mitochondrial complexes I-III, the major sites for oxygen radicals. Plumbagin decreased oxygen consumption rate, ATP production and optical redox ratio (NAD(P)H/FAD) indicating interference with electron transport downstream of mitochondrial Complex II. Oxidative stress induced by plumbagin triggered an anti-oxidative response via activation of Nrf2. Plumbagin and the Nrf2 inhibitor, brusatol, synergized to inhibit cell proliferation. These data indicate that while inhibition of electron transport is the conserved mechanism responsible for plumbagin's chemotoxicity, activation of Nrf2 is the resulting anti-oxidative response that allows plumbagin to serve as a chemopreventive agent. This study provides the basis for designing potent and selective plumbagin analogs that can be coupled with suitable Nrf2 inhibitors for chemotherapy or administered as single agents to induce Nrf2-mediated chemoprevention.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Modelos Moleculares , Conformação Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Naftoquinonas/química , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Relação Estrutura-Atividade
15.
PLoS One ; 13(1): e0189524, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324748

RESUMO

The goal of this study was to investigate the anti-cancer effects of Trans10,cis12 conjugated linoleic acid (t10,c12 CLA). MTT assays and QCM™ chemotaxis 96-wells were used to test the effect of t10,c12 CLA on the proliferation and migration and invasion of cancer cells. qPCR and Western Blotting were used to determine the expression of specific factors. RNA sequencing was conducted using the Illumina platform and apoptosis was measured using a flow cytometry assay. t10,c12 CLA (IC50, 7 µM) inhibited proliferation of ovarian cancer cell lines SKOV-3 and A2780. c9,t11 CLA did not attenuate the proliferation of these cells. Transcription of 165 genes was significantly repressed and 28 genes were elevated. Genes related to ER stress, ATF4, CHOP, and GADD34 were overexpressed whereas EDEM2 and Hsp90, genes required for proteasomal degradation of misfolded proteins, were downregulated upon treatment. While apoptosis was not detected, t10,c12 CLA treatment led to 9-fold increase in autophagolysosomes and higher levels of LC3-II. G1 cell cycle arrest in treated cells was correlated with phosphorylation of GSK3ß and loss of ß-catenin. microRNA miR184 and miR215 were upregulated. miR184 likely contributed to G1 arrest by downregulating E2F1. miR215 upregulation was correlated with increased expression of p27/Kip-1. t10,c12 CLA-mediated inhibition of invasion and migration correlated with decreased expression of PTP1b and decreased Src activation by inhibiting phosphorylation at Tyr416. Due to its ability to inhibit proliferation and migration, t10,c12 CLA should be considered for treatment of ovarian cancer.


Assuntos
Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Neoplasias Ovarianas/patologia , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos
16.
J Immunol ; 198(4): 1575-1584, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062694

RESUMO

Most cancer immunotherapies include activation of either innate or adaptive immune responses. We hypothesized that the combined activation of both innate and adaptive immunity will result in better antitumor efficacy. We have previously shown the synergy of an agonistic anti-CD40 mAb (anti-CD40) and CpG-oligodeoxynucleotides in activating macrophages to induce tumor cell killing in mice. Separately, we have shown that a direct intratumoral injection of immunocytokine (IC), an anti-GD2 Ab linked to IL-2, can activate T and NK cells resulting in antitumor effects. We hypothesized that activation of macrophages with anti-CD40/CpG, and NK cells with IC, would cause innate tumor destruction, leading to increased presentation of tumor Ags and adaptive T cell activation; the latter could be further augmented by anti-CTLA-4 Ab to achieve tumor eradication and immunological memory. Using the mouse GD2+ B78 melanoma model, we show that anti-CD40/CpG treatment led to upregulation of T cell activation markers in draining lymph nodes. Anti-CD40/CpG + IC/anti-CTLA-4 synergistically induced regression of advanced s.c. tumors, resulting in cure of some mice and development of immunological memory against B78 and wild type B16 tumors. Although the antitumor effect of anti-CD40/CpG did not require T cells, the antitumor effect of IC/anti-CTLA-4 was dependent on T cells. The combined treatment with anti-CD40/CpG + IC/anti-CTLA-4 reduced T regulatory cells in the tumors and was effective against distant solid tumors and lung metastases. We suggest that a combination of anti-CD40/CpG and IC/anti-CTLA-4 should be developed for clinical testing as a potentially effective novel immunotherapy strategy.


Assuntos
Imunidade Adaptativa , Anticorpos Monoclonais/uso terapêutico , Imunidade Inata , Imunoterapia , Macrófagos/imunologia , Melanoma Experimental/terapia , Animais , Antígenos CD40/imunologia , Citotoxicidade Imunológica , Memória Imunológica , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Linfócitos T/imunologia
17.
Oncotarget ; 7(52): 86608-86620, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27888810

RESUMO

In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.


Assuntos
Fator de Crescimento Semelhante a EGF de Ligação à Heparina/fisiologia , Macrófagos/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Receptores ErbB/fisiologia , Retroalimentação Fisiológica , Feminino , Humanos
18.
Sci Rep ; 6: 27530, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270209

RESUMO

The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Monoterpenos Acíclicos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lactonas/administração & dosagem , Lactonas/química , Monoterpenos/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo
19.
Mol Immunol ; 66(2): 208-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25829245

RESUMO

Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD40/imunologia , Lipídeo A/análogos & derivados , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Oligodesoxirribonucleotídeos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Lipídeo A/farmacologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
20.
Mol Cancer ; 13: 129, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24886523

RESUMO

Over three decades have passed since the first report on the expression of CA125 by ovarian tumors. Since that time our understanding of ovarian cancer biology has changed significantly to the point that these tumors are now classified based on molecular phenotype and not purely on histological attributes. However, CA125 continues to be, with the recent exception of HE4, the only clinically reliable diagnostic marker for ovarian cancer. Many large-scale clinical trials have been conducted or are underway to determine potential use of serum CA125 levels as a screening modality or to distinguish between benign and malignant pelvic masses. CA125 is a peptide epitope of a 3-5 million Da mucin, MUC16. Here we provide an in-depth review of the literature to highlight the importance of CA125 as a prognostic and diagnostic marker for ovarian cancer. We focus on the increasing body of literature describing the biological role of MUC16 in the progression and metastasis of ovarian tumors. Finally, we consider previous and on-going efforts to develop therapeutic approaches to eradicate ovarian tumors by targeting MUC16. Even though CA125 is a crucial marker for ovarian cancer, the exact structural definition of this antigen continues to be elusive. The importance of MUC16/CA125 in the diagnosis, progression and therapy of ovarian cancer warrants the need for in-depth research on the biochemistry and biology of this mucin. A renewed focus on MUC16 is likely to culminate in novel and more efficient strategies for the detection and treatment of ovarian cancer.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Antígeno Ca-125/genética , Imunoterapia , Proteínas de Membrana/genética , Neoplasias Ovarianas/terapia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/imunologia , Antígeno Ca-125/imunologia , Ensaios Clínicos como Assunto , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/imunologia , Metástase Neoplásica , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Prognóstico , Proteínas/genética , Proteínas/imunologia , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...