Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Popul Biol ; 156: 12-21, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191077

RESUMO

Although cooperative hunting is widespread among animals, its benefits are unclear. At low frequencies, cooperative hunting may allow predators to escape competition and access bigger prey that could not be caught by a lone cooperative predator. Cooperative hunting is a more successful strategy when it is common, but its spread can result in overhunting big prey, which may have a lower per-capita growth rate than small prey. We construct a one-predator species, two-prey species model in which predators either learn to hunt small prey alone or learn to hunt big prey cooperatively. Predators first learn vertically from parents, then horizontally (i.e. socially) from random individuals or siblings. After horizontal transmission, they hunt with their learning partner if both are cooperative, and otherwise they hunt alone. Cooperative hunting cannot evolve when initially rare unless predators (a) interact with siblings, or (b) horizontally transmit the cooperative behavior to potential hunting partners. Whereas competition for small prey favors cooperative hunting when this cooperation is initially rare, the frequency of cooperative hunting cannot reach 100% unless big prey is abundant. Furthermore, a mutant that increases horizontal learning can invade if cooperative hunting is present, but not at 100%, because horizontal learning allows pairs of predators to have the same strategy. Our results reveal that the interactions between prey availability, social learning, and degree of cooperation among predators may have important effects on ecosystems.


Assuntos
Ecossistema , Caça , Humanos , Animais , Comportamento Predatório , Comportamento Cooperativo , Aprendizagem
2.
Theor Popul Biol ; 156: 5-11, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142968

RESUMO

Mathematical models of conformity and anti-conformity have commonly included a set of simplifying assumptions. For example, (1) there are m=2 cultural variants in the population, (2) naive individuals observe the cultural variants of n=3 adult "role models," and (3) individuals' levels of conformity or anti-conformity do not change over time. Three recent theoretical papers have shown that departures from each of these assumptions can produce new population dynamics. Here, we explore cases in which multiple, or all, of these assumptions are violated simultaneously: namely, in a population with m variants of a trait where conformity (or anti-conformity) occurs with respect to n role models, we study a model in which the conformity rates at each generation are random variables that are independent of the variant frequencies at that generation. For this model a class of symmetric constant equilibria exist, and it is possible that all of these equilibria are simultaneously stochastically locally stable. In such cases, the effect of initial conditions on subsequent evolutionary trajectories becomes very complicated.


Assuntos
Evolução Cultural , Humanos , Comportamento Social , Modelos Teóricos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA