Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38418892

RESUMO

BACKGROUND: Natural killer (NK) cells are non-antigen specific innate immune cells that can be redirected to targets of interest using multiple strategies, although none are currently FDA-approved. We sought to evaluate NK cell infiltration into tumors to develop an improved understanding of which histologies may be most amenable to NK cell-based therapies currently in the developmental pipeline. METHODS: DNA (targeted/whole-exome) and RNA (whole-transcriptome) sequencing was performed from tumors from 45 cancer types (N = 90,916 for all cancers and N = 3365 for prostate cancer) submitted to Caris Life Sciences. NK cell fractions and immune deconvolution were inferred from RNA-seq data using quanTIseq. Real-world overall survival (OS) and treatment status was determined and Kaplan-Meier estimates were calculated. Statistical significance was determined using X2 and Mann-Whitney U tests, with corrections for multiple comparisons where appropriate. RESULTS: In both a pan-tumor and prostate cancer (PCa) -specific setting, we demonstrated that NK cells represent a substantial proportion of the total cellular infiltrate (median range 2-9% for all tumors). Higher NK cell infiltration was associated with improved OS in 28 of 45 cancer types, including (PCa). NK cell infiltration was negatively correlated with common driver mutations and androgen receptor variants (AR-V7) in primary prostate biopsies, while positively correlated with negative immune regulators. Higher levels of NK cell infiltration were associated with patterns consistent with a compensatory anti-inflammatory response. CONCLUSIONS: Using the largest available dataset to date, we demonstrated that NK cells infiltrate a broad range of tumors, including both primary and metastatic PCa. NK cell infiltration is associated with improved PCa patient outcomes. This study demonstrates that NK cells are capable of trafficking to both primary and metastatic PCa and are a viable option for immunotherapy approaches moving forward. Future development of strategies to enhance tumor-infiltrating NK cell-mediated cytolytic activity and activation while limiting inhibitory pathways will be key.

2.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881874

RESUMO

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Quinase Syk/genética , Sistemas CRISPR-Cas , Células Matadoras Naturais , Citocinas , Citotoxicidade Celular Dependente de Anticorpos
3.
Front Immunol ; 14: 1060905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911670

RESUMO

New treatments are required to enhance current therapies for lung cancer. Mesothelin is a surface protein overexpressed in non-small cell lung cancer (NSCLC) that shows promise as an immunotherapeutic target in phase I clinical trials. However, the immunosuppressive environment in NSCLC may limit efficacy of these therapies. We applied time-of-flight mass cytometry to examine the state of circulating mononuclear cells in fourteen patients undergoing treatment for unresectable lung cancer. Six patients had earlier stage NSCLC (I-IVA) and eight had highly advanced NSCLC (IVB). The advanced NSCLC patients relapsed with greater frequency than the earlier stage patients. Before treatment, patients with very advanced NSCLC had a greater proportion of CD14- myeloid cells than patients with earlier NSCLC. These patients also had fewer circulating natural killer (NK) cells bearing an Fc receptor, CD16, which is crucial to antibody-dependent cellular cytotoxicity. We designed a high affinity tri-specific killer engager (TriKE®) to enhance NK cytotoxicity against mesothelin+ targets in this environment. The TriKE consisted of CD16 and mesothelin binding elements linked together by IL-15. TriKE enhanced proliferation of lung cancer patient NK cells in vitro. Lung cancer lines are refractory to NK cell killing, but the TriKE enhanced cytotoxicity and cytokine production by patient NK cells when challenged with tumor. Importantly, TriKE triggered NK cell responses from patients at all stages of disease and treatment, suggesting TriKE can enhance current therapies. These pre-clinical studies suggest mesothelin-targeted TriKE has the potential to overcome the immunosuppressive environment of NSCLC to treat disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mesotelina , Células Matadoras Naturais/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Imunossupressores/metabolismo
4.
Cancer Immunol Res ; 11(5): 674-686, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807510

RESUMO

Immune checkpoint blockade (ICB) has changed the standard of care for many patients with cancer, yet no ICB is approved for ovarian cancer. We hypothesized that maintenance therapy with an IL15 "superagonist" (N-803) and ICB in combination could induce potent immune activation in ovarian cancer. Using flow cytometry, cytometry by time of flight analysis, and cytotoxicity assays, we analyzed patient samples from women with advanced epithelial ovarian cancer treated with N-803 for indications of PD-1/PD-L1 upregulation with this treatment. In addition, ICB and N-803 were evaluated in preclinical studies to determine the functional impact of combination therapy on natural killer (NK) cells in vitro and in vivo. We observed that N-803 stimulated initial NK-cell expansion in patient samples; however, proliferation was not sustained beyond 2 weeks despite continued treatment. This result was reverse translated back to the laboratory to determine the functional relevance of this finding. The addition of ICB with an antibody-dependent cellular cytotoxicity IgG1 antibody against PD-L1 (avelumab) or an IgG4 antibody against PD-1 (pembrolizumab) enhanced N-803 induced NK-cell function in vitro. Using models of human ovarian cancer and NK-cell adoptive transfer in mice, we showed enhanced antitumor control with N-803 and ICB, as well as a combination effect that enhanced NK-cell persistence and expansion in vivo. This work suggests that PD-1/PD-L1 blockade combined with IL15 signaling may overcome resistance to cytokine therapy in ovarian cancer.


Assuntos
Antígeno B7-H1 , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Interleucina-15/farmacologia , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Imunoterapia , Neoplasias Ovarianas/tratamento farmacológico
5.
Clin Cancer Res ; 29(6): 1114-1124, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36622700

RESUMO

PURPOSE: Acute and chronic GVHD remain major causes of transplant-related morbidity and mortality (TRM) after allogeneic hematopoietic cell transplantation (alloHCT). We have shown CD83 chimeric antigen receptor (CAR) T cells prevent GVHD and kill myeloid leukemia cell lines. In this pilot study, we investigate CD83 expression on GVHD effector cells, correlate these discoveries with clinical outcomes, and evaluate critical therapeutic implications for transplant recipients. EXPERIMENTAL DESIGN: CD83 expression was evaluated among circulating CD4+ T cells, B-cell subsets, T follicular helper (Tfh) cells, and monocytes from patients with/without acute or chronic GVHD (n = 48 for each group), respectively. CD83 expression was correlated with survival, TRM, and relapse after alloHCT. Differential effects of GVHD therapies on CD83 expression was determined. RESULTS: CD83 overexpression on CD4+ T cells correlates with reduced survival and increased TRM. Increased CD83+ B cells and Tfh cells, but not monocytes, are associated with poor posttransplant survival. CD83 CAR T eliminate autoreactive CD83+ B cells isolated from patients with chronic GVHD, without B-cell aplasia as observed with CD19 CAR T. We demonstrate robust CD83 antigen density on human acute myeloid leukemia (AML), and confirm potent antileukemic activity of CD83 CAR T in vivo, without observed myeloablation. CONCLUSIONS: CD83 is a promising diagnostic marker of GVHD and warrants further investigation as a therapeutic target of both GVHD and AML relapse after alloHCT.


Assuntos
Síndrome de Bronquiolite Obliterante , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Projetos Piloto , Recidiva , Transplante Homólogo
6.
J Immunother Cancer ; 10(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319065

RESUMO

BACKGROUND: Natural killer (NK) cells hold great promise as a source for allogeneic cell therapy against hematological malignancies, including acute myeloid leukemia (AML). Current treatments are hampered by variability in NK cell subset responses, a limitation which could be circumvented by specific expansion of highly potent single killer immunoglobulin-like receptor (KIR)+NKG2C+ adaptive NK cells to maximize missing-self reactivity. METHODS: We developed a GMP-compliant protocol to expand adaptive NK cells from cryopreserved cells derived from select third-party superdonors, that is, donors harboring large adaptive NK cell subsets with desired KIR specificities at baseline. We studied the adaptive state of the cell product (ADAPT-NK) by flow cytometry and mass cytometry as well as cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq). We investigated the functional responses of ADAPT-NK cells against a wide range of tumor target cell lines and primary AML samples using flow cytometry and IncuCyte as well as in a mouse model of AML. RESULTS: ADAPT-NK cells were >90% pure with a homogeneous expression of a single self-HLA specific KIR and expanded a median of 470-fold. The ADAPT-NK cells largely retained their adaptive transcriptional signature with activation of effector programs without signs of exhaustion. ADAPT-NK cells showed high degranulation capacity and efficient killing of HLA-C/KIR mismatched tumor cell lines as well as primary leukemic blasts from AML patients. Finally, the expanded adaptive NK cells had preserved robust antibody-dependent cellular cytotoxicity potential and combination of ADAPT-NK cells with an anti-CD16/IL-15/anti-CD33 tri-specific engager led to near-complete killing of resistant CD45dim blast subtypes. CONCLUSIONS: These preclinical data demonstrate the feasibility of off-the-shelf therapy with a non-engineered, yet highly specific, NK cell population with full missing-self recognition capability.


Assuntos
Citotoxicidade Imunológica , Leucemia Mieloide Aguda , Animais , Camundongos , Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/patologia , Receptores KIR/metabolismo
7.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36162918

RESUMO

BACKGROUND: The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS: A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS: cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS: Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.


Assuntos
Interleucina-15 , Neoplasias , Animais , Antígenos de Superfície/metabolismo , Células Endoteliais , Interleucina-15/metabolismo , Células Matadoras Naturais , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas dos Microfilamentos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores de Superfície Celular , Fator de Transcrição STAT5/metabolismo , Microambiente Tumoral
8.
Blood ; 140(23): 2451-2462, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917442

RESUMO

Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells, termed iDuo NK cells, displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models, iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore, iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19, features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.


Assuntos
Leucemia , Neoplasias , Humanos , Deriva e Deslocamento Antigênicos , Leucemia/terapia , Células Matadoras Naturais
9.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727627

RESUMO

NK cell exhaustion is caused by chronic exposure to activating stimuli during viral infection, tumorigenesis, and prolonged cytokine treatment. Evidence suggests that exhaustion may play a role in disease progression. However, relative to T cell exhaustion, the mechanisms underlying NK cell exhaustion and methods of reversing it are poorly understood. Here, we describe a potentially novel in vitro model of exhaustion that uses plate-bound agonists of the NK cell activating receptors NKp46 and NKG2D to induce canonical exhaustion phenotypes. In this model, prolonged activation resulted in downregulation of activating receptors, upregulation of checkpoint markers, decreased cytokine production and cytotoxicity in vitro, weakened glycolytic capacity, and decreased persistence, function, and tumor control in vivo. Furthermore, we discovered a beneficial effect of NK cell inhibitory receptor signaling during exhaustion. By simultaneously engaging the inhibitory receptor NKG2A during activation in our model, cytokine production and cytotoxicity defects were mitigated, suggesting that balancing positive and negative signals integrated by effector NK cells can be beneficial for antitumor immunity. Together, these data uncover some of the mechanisms underlying NK cell exhaustion in humans and establish our in vitro model as a valuable tool for studying the processes regulating exhaustion.


Assuntos
Células Matadoras Naturais , Neoplasias , Proteínas de Transporte , Citocinas , Humanos
10.
Stem Cell Res Ther ; 13(1): 165, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414042

RESUMO

Natural killer (NK) cells are innate immune cells that recognize malignant cells through a wide array of germline-encoded receptors. Triggering of activating receptors results in cytotoxicity and broad immune system activation. The former is achieved through release of cytotoxic granules and presentation of death receptor ligands, while the latter is mediated by inflammatory cytokines, such as interferon-γ and tumor necrosis factor α. Early success with ex vivo activation of NK cells and adoptive transfer suggest they are a safe therapeutic with promising responses in advanced hematologic malignancies. In particular, adoptive NK cell therapies can serve as a 'bridge' to potentially curative allogeneic stem cell transplantation. In addition, strategies are being developed that expand large numbers of cells from limited starting material and mature NK cells from precursors. Together, these make 'off-the-shelf' NK cells possible to treat a wide range of cancers. Research efforts have focused on creating a range of tools that increase targeting of therapeutic NK cells toward cancer-from therapeutic antibodies that drive antibody-dependent cellular cytotoxicity, to chimeric antigen receptors. As these novel therapies start to show promise in clinical trials, the field is rapidly moving toward addressing other challenges that limit NK cell therapeutics and the goal to treat solid tumors. This review describes the state of therapeutic NK cell targeting of tumors; discusses the challenges that need to be addressed before NK cells can be applied as a wide-ranging treatment for cancer; and points to some of the innovations that are being developed to surmount these challenges. Suppressive cells in the tumor microenvironment pose a direct threat to therapeutic NK cells, through presentation of inhibitory ligands and secretion of suppressive cytokines and metabolites. The nutrient- and oxygen-starved conditions under which NK cells must function necessitate an understanding of therapeutic NK cell metabolism that is still emerging. Prior to these challenges, NK cells must find their way into and persist in the tumor itself. Finally, the desirability of a 'single-shot' NK cell treatment and the problems and benefits of a short-lived rejection-prone NK cellular product are discussed.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Citocinas , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Ligantes , Neoplasias/terapia , Microambiente Tumoral
11.
Transl Oncol ; 16: 101318, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34942534

RESUMO

Epithelial ovarian cancer (EOC) is a highly heterogeneous disease encompassing several distinct molecular subtypes and clinical entities. Despite the initial success of surgical debulking and adjuvant chemotherapy, recurrence with chemotherapy resistant tumors is common in patients with EOC and leads to poor overall survival. The extensive genetic and phenotypic heterogeneity associated with ovarian cancers has hindered the identification of effective prognostic and predictive biomarkers in EOC patients. In the current studies, we identify a tumor cell surface oncoantigen, chondroitin sulfate proteoglycan 4 (CSPG4), as an independent risk factor for decreased survival of patients with EOC. Our results show that CSPG4 promotes EOC cell invasion, cisplatin resistance and spheroid formation in vitro and tumor expansion in vivo. Mechanistically, spheroid formation and tumor cell invasion are due to CSPG4-stimulated expression of the mesenchymal transcription factor ZEB1. Furthermore, we have developed a novel monoclonal anti-CSGP4 antibody against the juxtamembrane domain of the core protein that limits CSPG4-stimulated ZEB1 expression, tumor cell invasion and promotes EOC apoptosis within spheroid cultures. We therefore propose that CSPG4 expression drives phenotypic heterogeneity and malignant progression in EOC tumors. These studies further demonstrate that CSPG4 expression levels are a potential diagnostic biomarker in EOC and indicate that targeting cells which express this oncoantigen could limit recurrence and improve outcomes in patients with EOC.

13.
Cancer Immunol Res ; 9(10): 1110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34493487

RESUMO

The advent of checkpoint blockade and use of cytokines to enhance immune responses have changed the field of immunotherapy. Yet, these approaches are not without drawbacks including systemic toxicities and acquired therapeutic resistance. In this issue, Xu and colleagues describe a novel biological molecule composed of a PD-1-targeting antibody linked to a mutated IL15 that induces better targeting of IL15 to tumor-infiltrating lymphocytes (TIL) to decrease systemic toxicities and enhance antitumor responses.See related article by Xu et al., p. 1141 (1).


Assuntos
Imunoterapia , Linfócitos do Interstício Tumoral , Citocinas
14.
Cell Stem Cell ; 28(12): 2062-2075.e5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34525347

RESUMO

Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC). The clonal iPSC line was engineered to express a high affinity, non-cleavable version of the Fc receptor CD16a and a membrane-bound interleukin (IL)-15/IL-15R fusion protein. The third edit was a knockout of the ecto-enzyme CD38, which hydrolyzes NAD+. Natural killer (NK) cells derived from these uniformly engineered iPSCs, termed iADAPT, displayed metabolic features and gene expression profiles mirroring those of cytomegalovirus-induced adaptive NK cells. iADAPT NK cells persisted in vivo in the absence of exogenous cytokine and elicited superior antitumor activity. Our findings suggest that unique subsets of the immune system can be modeled through iPSC technology for effective treatment of patients with advanced cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Células Cultivadas , Humanos , Imunoterapia , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/terapia
15.
Cancers (Basel) ; 13(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439149

RESUMO

Clinical studies validated antibodies directed against HER2, trastuzumab, and pertuzumab, as useful methodology to target breast cancer cases where HER2 is expressed. The hope was that HER2 targeting using these antibodies in ovarian cancer patients would prove useful as well, but clinical studies have shown lackluster results in this setting, indicating a need for a more comprehensive approach. Immunotherapy approaches stimulating the innate immune system show great promise, although enhancing natural killer (NK) function is not an established mainstream immunotherapy. This study focused on a new nanobody platform technology in which the bispecific antibody was altered to incorporate a cytokine. Herein we describe bioengineered CAM1615HER2 consisting of a camelid VHH antibody fragment recognizing CD16 and a single chain variable fragment (scFv) recognizing HER2 cross-linked by the human interleukin-15 (IL-15) cytokine. This tri-specific killer engager (TriKETM) showed in vitro prowess in its ability to kill ovarian cancer human cell lines. In addition, we demonstrated its efficacy in inducing potent anti-cancer effects in an in vivo xenograft model of human ovarian cancer engrafting both cancer cells and human NK cells. While previous approaches with trastuzumab and pertuzumab faltered in ovarian cancer, the hope is incorporating targeting and cytokine priming within the same molecule will enhance efficacy in this setting.

16.
Cancer Immunol Immunother ; 70(12): 3701-3708, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398302

RESUMO

Similar to pediatric acute myeloid leukemia (AML) the subgroup of biphenotypic acute lymphoblastic leukemia (ALL) is a rare complex entity with adverse outcome, characterized by the surface expression of CD33. Despite novel and promising anti-CD19 targeted immunotherapies such as chimeric antigen receptor T cells and bispecific anti-CD19/CD3 antibodies, relapse and resistance remain a major challenge in about 30% to 60% of patients. To investigate the potential role of the fully humanized bispecific antibody CD16 × CD33 (BiKE) in children with CD33+ acute leukemia, we tested whether the reagent was able to boost NK cell effector functions against CD33+ AML and biphenotypic ALL blasts. Stimulation of primary NK cells from healthy volunteers with 16 × 33 BiKE led to increased cytotoxicity, degranulation and cytokine production against CD33+ cell lines. Moreover, BiKE treatment significantly increased degranulation, IFN-γ and TNF-α production against primary ALL and AML targets. Importantly, also NK cells from leukemic patients profited from restoration of effector functions by BiKE treatment, albeit to a lesser extent than NK cells from healthy donors. In particular, those patients with low perforin and granzyme expression showed compromised cytotoxic function even in the presence of BiKE. In patients with intrinsic NK cell deficiency, combination therapy of CD16xCD33 BiKE and allogeneic NK cells might thus be a promising therapeutic approach. Taken together, CD16xCD33 BiKE successfully increased NK cell effector functions against pediatric AML and biphenotypic ALL blasts and constitutes a promising new option for supporting maintenance therapy or "bridging" consolidation chemotherapy before hematopoietic stem cell transplantation.


Assuntos
Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Receptores de IgG/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Anticorpos Biespecíficos/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Proteínas Ligadas por GPI/imunologia , Células HL-60 , Humanos , Imunoterapia/métodos , Ativação Linfocitária/imunologia
17.
Front Immunol ; 12: 711621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367174

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes that can recognize assorted determinants on tumor cells and rapidly kill these cells. Due to their anti-tumor effector functions and potential for allogeneic use, various NK cell platforms are being examined for adoptive cell therapies. However, their limited in vivo persistence is a current challenge. Cytokine-mediated activation of these cells is under extensive investigation and interleukin-15 (IL-15) is a particular focus since it drives their activation and proliferation. IL-15 efficacy though is limited in part by its induction of regulatory checkpoints. A disintegrin and metalloproteinase-17 (ADAM17) is broadly expressed by leukocytes, including NK cells, and it plays a central role in cleaving cell surface receptors, a process that regulates cell activation and cell-cell interactions. We report that ADAM17 blockade with a monoclonal antibody markedly increased human NK cell proliferation by IL-15 both in vitro and in a xenograft mouse model. Blocking ADAM17 resulted in a significant increase in surface levels of the homing receptor CD62L on proliferating NK cells. We show that NK cell proliferation in vivo by IL-15 and the augmentation of this process upon blocking ADAM17 are dependent on CD62L. Hence, our findings reveal for the first time that ADAM17 activation in NK cells by IL-15 limits their proliferation, presumably functioning as a feedback system, and that its substrate CD62L has a key role in this process in vivo. ADAM17 blockade in combination with IL-15 may provide a new approach to improve NK cell persistence and function in cancer patients.


Assuntos
Proteína ADAM17/metabolismo , Interleucina-15/farmacologia , Células Matadoras Naturais/citologia , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/imunologia , Transferência Adotiva , Animais , Divisão Celular , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Interleucina-15/metabolismo , Células Matadoras Naturais/enzimologia , Selectina L/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/farmacologia
18.
Mol Diagn Ther ; 25(5): 577-592, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34327614

RESUMO

Natural killer (NK) cell-mediated cancer immunotherapy has grown significantly over the past two decades. More recently, multi-specific engagers have been developed as cancer therapeutics to effectively arm endogenous NK cells to more potently induce specific cytolytic responses against tumor targets. This review explores the bi- and tri-specific NK/tumor engagers that are emerging as a new generation of immunotherapeutics. These molecules vary in configuration, but they typically have small molecular weights and domains that engage specific tumor antigens and NK cell-activating receptors such as CD16, NKp30, NKp46, and NKG2D. They have demonstrated compelling potential in boosting NK cell cytotoxicity against specific tumor targets. This highly adaptable off-the-shelf platform, which in some formats also integrates cytokines, is poised to revolutionize targeted NK cell immunotherapy, either as a monotherapy or in combination with other effective anti-cancer therapies.


Assuntos
Células Matadoras Naturais , Neoplasias , Citocinas , Humanos , Imunoterapia , Neoplasias/terapia
19.
Mol Ther ; 29(12): 3410-3421, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174441

RESUMO

Natural killer (NK) cells mediate the cytolysis of transformed cells and are currently used as an adoptive cellular therapy to treat cancer. Infection with human cytomegalovirus has been shown to expand a subset of "adaptive" NK cells expressing the activation receptor NKG2C that have preferred functional attributes distinct from conventional NK cells. Because NKG2C delivers a strong activating signal to NK cells, we hypothesized that NKG2C could specifically trigger NK-cell-mediated antitumor responses. To elicit a tumor-directed response from NKG2C+ NK cells, we created an anti-NKG2C/IL-15/anti-CD33 killer engager called NKG2C-KE that directs NKG2C+ cells to target CD33+ cells and tumor-associated antigen expressed by acute myelogenous leukemia cells. The NKG2C-KE induced specific degranulation, interferon-γ production, and proliferation of NKG2C-expressing NK cells from patients who reactivated cytomegalovirus after allogeneic transplantation. The NKG2C-KE was also tested in a more homogeneous system using induced pluripotent stem cell (iPSC)-derived NK (iNK) cells that have been engineered to express NKG2C at high levels. The NKG2C-KE triggered iNK-cell-mediated cytotoxicity against CD33+ cells and primary AML blasts. The NKG2C-KE-specific interaction with adaptive NK and NKG2C+ iNK cells represents a new immunotherapeutic paradigm that uniquely engages highly active NK cells to induce cytotoxicity against AML through redirected targeting.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Citomegalovirus , Humanos , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia
20.
Blood Adv ; 5(4): 1069-1080, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33599743

RESUMO

Expression of programmed cell death protein 1 (PD-1) on natural killer (NK) cells has been difficult to analyze on human NK cells. By testing commercial clones and novel anti-PD-1 reagents, we found expression of functional PD-1 on resting human NK cells in healthy individuals and reconstituting NK cells early after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Peripheral blood samples from healthy individuals and transplant recipients were stained for PD-1 expression using the commercial anti-PD-1 clone PD1.3.1.3, fluorescein isothiocyanate (FITC)-labeled pembrolizumab, or an FITC-labeled single-chain variable fragment (scFv) reagent made from pembrolizumab. These reagents identified low yet consistent basal PD-1 expression on resting NK cells, a finding verified by finding lower PD-1 transcripts in sorted NK cells compared with those in resting or activated T cells. An increase in PD-1 expression was identified on paired resting NK cells after allo-HSCT. Blockade of PD-1 on resting NK cells from healthy donors with pembrolizumab did not enhance NK function against programmed death-ligand 1 (PD-L1)-expressing tumor lines, but blocking with its scFv derivative resulted in a twofold increase in NK cell degranulation and up to a fourfold increase in cytokine production. In support of this mechanism, PD-L1 overexpression of K562 targets suppressed NK cell function. Interleukin-15 (IL-15) activity was potent and could not be further enhanced by PD-1 blockade. A similar increase in function was observed with scFv PD-1 blockade on resting blood NK cells after allo-HSCT. We identify the functional importance of the PD-1/PD-L1 axis on human NK cells in which blockade or activation to overcome inhibition will enhance NK cell-mediated antitumor control.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Células Matadoras Naturais , Ativação Linfocitária , Receptor de Morte Celular Programada 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...