Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892995

RESUMO

The quantum Rabi model (QRM) with linear coupling between light mode and qubit exhibits the analog of a second-order phase transition for vanishing mode frequency which allows for criticality-enhanced quantum metrology in a few-body system. We show that the QRM including a nonlinear coupling term exhibits much higher measurement precisions due to its first-order-like phase transition at finite frequency, avoiding the detrimental slowing-down effect close to the critical point of the linear QRM. When a bias term is added to the Hamiltonian, the system can be used as a fluxmeter or magnetometer if implemented in circuit QED platforms.

2.
J Phys Chem Lett ; 11(20): 8810-8818, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32914984

RESUMO

We analyze how the photorelaxation dynamics of a molecule can be controlled by modifying its electromagnetic environment using a nanocavity mode. In particular, we consider the photorelaxation of the RNA nucleobase uracil, which is the natural mechanism to prevent photodamage. In our theoretical work, we identify the operative conditions in which strong coupling with the cavity mode can open an efficient photoprotective channel, resulting in a relaxation dynamics twice as fast as the natural one. We rely on a state-of-the-art chemically detailed molecular model and a non-Hermitian Hamiltonian propagation approach to perform full-quantum simulations of the system dissipative dynamics. By focusing on the photon decay, our analysis unveils the active role played by cavity-induced dissipative processes in modifying chemical reaction rates, in the context of molecular polaritonics. Remarkably, we find that the photorelaxation efficiency is maximized when an optimal trade-off between light-matter coupling strength and photon decay rate is satisfied. This result is in contrast with the common intuition that increasing the quality factor of nanocavities and plasmonic devices improves their performance. Finally, we use a detailed model of a metal nanoparticle to show that the speedup of the uracil relaxation could be observed via coupling with a nanosphere pseudomode, without requiring the implementation of complex nanophotonic structures.


Assuntos
Nanopartículas Metálicas/química , RNA/química , Uracila/química , Transferência de Energia , Cinética , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Fótons , Teoria Quântica , Prata/química , Propriedades de Superfície
3.
Sci Rep ; 10(1): 13408, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770061

RESUMO

The Dicke model is a paradigmatic quantum-optical model describing the interaction of a collection of two-level systems with a single bosonic mode. Effective implementations of this model made it possible to observe the emergence of superradiance, i.e., cooperative phenomena arising from the collective nature of light-matter interactions. Via reservoir engineering and analogue quantum simulation techniques, current experimental platforms allow us not only to implement the Dicke model but also to design more exotic interactions, such as the two-photon Dicke model. In the Hamiltonian case, this model presents an interesting phase diagram characterized by two quantum criticalities: a superradiant phase transition and a spectral collapse, that is, the coalescence of discrete energy levels into a continuous band. Here, we investigate the effects of both qubit and photon dissipation on the phase transition and on the instability induced by the spectral collapse. Using a mean-field decoupling approximation, we analytically obtain the steady-state expectation values of the observables signaling a symmetry breaking, identifying a first-order phase transition from the normal to the superradiant phase. Our stability analysis unveils a very rich phase diagram, which features stable, bistable, and unstable phases depending on the dissipation rate.

4.
Phys Rev Lett ; 124(12): 120504, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32281838

RESUMO

Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an improvement in sensitivity is counterbalanced by the closing of the energy gap, which implies a critical slowing down and an inevitable growth of the protocol duration. Here, we design different metrological protocols that exploit the superradiant phase transition of the quantum Rabi model, a finite-component system composed of a single two-level atom interacting with a single bosonic mode. We show that, in spite of the critical slowing down, critical quantum optical probes can achieve a quantum-enhanced time scaling of the sensitivity in frequency-estimation protocols.

5.
Phys Rev Lett ; 124(4): 040404, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058793

RESUMO

We identify universal properties of the low-energy subspace of a wide class of quantum optical models in the ultrastrong coupling limit, where the coupling strength dominates over all other energy scales in the system. We show that the symmetry of the light-matter interaction is at the origin of a twofold degeneracy in the spectrum. We prove analytically this result for bounded Hamiltonians and extend it to a class of models with unbounded operators. As a consequence, we show that the emergence of superradiant phases previously investigated in the context of critical phenomena, is a general property of the ultrastrong coupling limit. The set of models we consider encompasses different scenarios of possible interplay between critical behavior and superradiance.

6.
Sci Rep ; 2: 443, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720131

RESUMO

The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. In this framework partial measurements can be carried out in order to extract only a portion of the information encoded in a quantum system, at the cost of inducing a limited amount of disturbance. Here we analyze experimentally the dynamics of sequential partial measurements carried out on a quantum system, focusing on the trade-off between the maximal information extractable and the disturbance. In particular we implement two sequential measurements observing that, by exploiting an adaptive strategy, is possible to find an optimal trade-off between the two quantities.


Assuntos
Algoritmos , Modelos Teóricos , Teoria Quântica , Fenômenos Químicos , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...