Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(6): 3690-3698, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37194468

RESUMO

Assessing the mechanical behavior of nano- and micron-scale particles with complex shapes is fundamental in drug delivery. Although different techniques are available to quantify the bulk stiffness in static conditions, there is still uncertainty in assessing particle deformability in dynamic conditions. Here, a microfluidic chip is designed, engineered, and validated as a platform to assess the mechanical behavior of fluid-borne particles. Specifically, potassium hydroxide (KOH) wet etching was used to realize a channel incorporating a series of micropillars (filtering modules) with different geometries and openings, acting as microfilters in the direction of the flow. These filtering modules were designed with progressively decreasing openings, ranging in size from about 5 down to 1 µm. Discoidal polymeric nanoconstructs (DPNs), with a diameter of 5.5 µm and a height of 400 nm, were realized with different poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) ratios (PLGA/PEG), namely, 5:1 and 1:0, resulting in soft and rigid particles, respectively. Given the peculiar geometry of DPNs, the channel height was kept to 5 µm to limit particle tumbling or flipping along the flow. After thorough physicochemical and morphological characterization, DPNs were tested within the microfluidic chip to investigate their behavior under flow. As expected, most rigid DPNs were trapped in the first series of pillars, whereas soft DPNs were observed to cross multiple filtering modules and reach the micropillars with the smallest opening (1 µm). This experimental evidence was also supported by computational tools, where DPNs were modeled as a network of springs and beads immersed in a Newtonian fluid using the smoothed particle hydrodynamics (SPH) method. This preliminary study presents a combined experimental-computational framework to quantify, compare, and analyze the characteristics of particles having complex geometrical and mechanical attributes under flow conditions.


Assuntos
Microfluídica , Microfluídica/instrumentação , Microfluídica/métodos , Nanoestruturas , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
2.
Adv Sci (Weinh) ; 10(10): e2205223, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683230

RESUMO

Breast cancer cell colonization of the lungs is associated with a dismal prognosis as the distributed nature of the disease and poor permeability of the metastatic foci challenge the therapeutic efficacy of small molecules, antibodies, and nanomedicines. Taking advantage of the unique physiology of the pulmonary circulation, here, micro-combinatorial hydrogel particles (µCGP) are realized via soft lithographic techniques to enhance the specific delivery of a cocktail of cytotoxic nanoparticles to metastatic foci. By cross-linking short poly(ethylene glycol) (PEG) chains with erodible linkers within a shape-defining template, a deformable and biodegradable polymeric skeleton is realized and loaded with a variety of therapeutic and imaging agents, including docetaxel-nanoparticles. In a model of advanced breast cancer lung metastasis, µCGP amplified the colocalization of docetaxel-nanoparticles with pulmonary metastatic foci, prolonged the retention of chemotoxic molecules at the diseased site, suppressed lesion growth, and boosted survival beyond 20 weeks post nodule engraftment. The flexible design and modular architecture of µCGP would allow the efficient deployment of complex combination therapies in other vascular districts too, possibly addressing metastatic diseases of different origins.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Docetaxel , Hidrogéis , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
3.
Biomater Adv ; 144: 213227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470174

RESUMO

The three-dimensional (3D) organization of cells affects their mobility, proliferation, and overall response to treatment. Spheroids, organoids, and microfluidic chips are used in cancer research to reproduce in vitro the complex and dynamic malignant microenvironment. Herein, single- and double-channel microfluidic devices are used to mimic the spatial organization of brain tumors and investigate the therapeutic efficacy of molecular and nano anti-cancer agents. Human glioblastoma multiforme (U87-MG) cells were cultured into a Matrigel matrix embedded within the microfluidic devices and exposed to different doses of free docetaxel (DTXL), docetaxel-loaded spherical polymeric nanoparticles (DTXL-SPN), and the aromatic N-glucoside N-(fluorenylmethoxycarbonyl)-glucosamine-6-phosphate (Fmoc-Glc6P). We observed that in the single-channel microfluidic device, brain tumor cells are more susceptible to DTXL treatment as compared to conventional cell monolayers (50-fold lower IC50 values). In the double-channel device, the cytotoxicity of free DTXL and DTXL-SPN is comparable, but significantly lowered as compared to the single-channel configuration. Finally, the administration of 500 µM Fmoc-Glc6P in the double-channel microfluidic device shows a 50 % U87-MG cell survival after only 24 h, and no deleterious effect on human astrocytes over 72 h. Concluding, the proposed microfluidic chips can be used to reproduce the 3D complex spatial arrangement of solid tumors and to assess the anti-cancer efficacy of therapeutic compounds administrated in situ or systemically.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Nanopartículas , Humanos , Docetaxel , Neoplasias Encefálicas/tratamento farmacológico , Dispositivos Lab-On-A-Chip , Microambiente Tumoral
4.
Biomacromolecules ; 23(11): 4678-4686, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36237166

RESUMO

Despite the extensive use of poly-lactic-glycolic-acid (PLGA) in biomedical applications, computational research on the mesoscopic characterization of PLGA-based delivery systems is limited. In this study, a computational model for PLGA is proposed, developed, and validated for the reproducibility of transport properties that can influence drug release, the rate of which remains difficult to control. For computational efficiency, coarse-grained (CG) models of the molecular components under consideration were built using the MARTINI force field version 2.2. The translocation free energy barrier ΔGt* across the PLGA matrix in the aqueous phase of docetaxel and derivatives of varying sizes and solubilities was predicted via molecular dynamics (MD) simulations and compared with experimental release data. The thermodynamic quantity ΔGt* anticipates and can help explain the release kinetics of hydrophobic compounds from the PLGA matrix, albeit within the limit of a drug concentration below a critical aggregation concentration. The proposed computational framework would allow one to predict the pharmacological behavior of polymeric implants loaded with a variety of payloads under different conditions, limiting the experimental workload and associated costs.


Assuntos
Glicóis , Simulação de Dinâmica Molecular , Docetaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Reprodutibilidade dos Testes
5.
Eur J Pharm Biopharm ; 174: 90-100, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358697

RESUMO

Maximizing loading while modulating the release of therapeutic molecules from nanoparticles and implantable drug delivery systems is the key to successfully address deadly diseases like brain cancer. Here, four different conjugates of the potent chemotherapeutic molecule docetaxel (DTXL)were realized to optimize the pharmacological properties of 1,000 × 400 nmDiscoidal PolymericNanoconstructs(DPNs). DTXL was covalently linked to poly-(ethylene) glycol(PEG)chains of different molecular weights, namely 350, 550 and 1,000 Da, and oleic acid (OA). After extensive physico-chemical and pharmacological characterizations, the conjugate PEG550-DTXL showedan optimal compromise between loading and sustained release out of DPNs, as opposed to the insufficient loading of PEG1000-DTXL and PEG350-DTXL and the excessively slow release of OA-DTXL. Not surprisingly, viability tests conducted on U87-MG cells showed a delay in cytotoxic activity for the DTXL conjugates compared to free DTXL within the first 48 h. However, PEG550-DTXL returned an IC50 value of âˆ¼ 10 nMat 72 h, which is comparable to free DTXL.In mice bearing orthotopically implanted U87-MG cells, the intravenous administration of PEG550-DTXL loaded DPNs doubled the overall animal survival (52.5 days) as compared to temozolomide (27 days) and the untreated controls (32 days). Collectively, these results continue to demonstrate that the therapeutic efficacy of nanoparticles can be boosted by rationally designing drug conjugates-particle complexes for optimal loading and release profiles.


Assuntos
Antineoplásicos , Glioblastoma , Nanopartículas , Animais , Docetaxel , Glioblastoma/tratamento farmacológico , Camundongos , Nanopartículas/química , Ácido Oleico , Polietilenoglicóis/química , Taxoides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...