Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(45): 41284-41295, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406552

RESUMO

Biodegradation of estrogen hormone micropollutants is a well-established approach toward their remediation. Fluorescently labeled substrates are used extensively for rapid, near-real-time analysis of biological processes and are a potential tool for studying biodegradation processes faster and more efficiently than conventional approaches. However, it is important to understand how the fluorescently tagged surrogates compare with the natural substrate in terms of chemical analysis and the intended application. We derivatized three natural estrogens with BODIPY fluorophores by azide-alkyne cycloaddition click reaction and developed an analytical workflow based on simple liquid-liquid extraction and HPLC-PDA analysis. The developed methods allow for concurrent analysis of both fluorescent and natural estrogens with comparable recovery, accuracy, and precision. We then evaluated the use of BODIPY-labeled estrogens as surrogate substrates for studying biodegradation using a model bacterium for estrogen metabolism. The developed analytical methods were successfully employed to compare the biological transformation of 17ß-estradiol (E2), with and without the BODIPY fluorescent tag. Through measuring the complete degradation of E2 and the transformation of BODIPY-estradiol to BODIPY-estrone in the presence of a co-substrate, we found that BODIPY-labeled estrogens are biologically viable surrogates for investigating biodegradation in environmental bacteria.

2.
Anal Methods ; 12(35): 4387-4393, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32940267

RESUMO

Quaternary ammonium compounds (QACs) are broad-spectrum disinfectants used in a range of everyday materials. Their high usage rates, limited regulation and reporting has meant their environmental release is largely uncontrolled and impact unknown. With links to antimicrobial resistance (AMR) and adsorption to wastewater solids (that are recycled), there is a need for more controlled disposal measures and monitoring. These environmental matrices are highly complex requiring methods that are often laborious and costly to undertake. Using a robust quantitative reversed-phase LC-MS/MS method, we have shown that an 'off the shelf' QuEChERS product can reliably extract (<10% RSD) aromatic and aliphatic QACs anticipated within municipal, industrial and agricultural waste from water and soil, with reduced matrix effects of 95.7-104.4% for recoveries of up to 53% from soil when combined with extract dilution. Therefore, unlike current literature, this work has shown that, with minimal development, the QuEChERS product can provide a rapid, effective and low cost preparation for quantifying QAC pollution and monitoring AMR.


Assuntos
Compostos de Amônio , Desinfetantes , Antibacterianos/farmacologia , Cromatografia Líquida , Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Solo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...