Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466140

RESUMO

A full chain simulation of the acoustic hadrontherapy monitoring for brain tumours is presented in this work. For the study, a proton beam of 100 MeV is considered. In the first stage, Geant4 is used to simulate the energy deposition and to study the behaviour of the Bragg peak. The energy deposition in the medium produces local heating that can be considered instantaneous with respect to the hydrodynamic time scale producing a sound pressure wave. The resulting thermoacoustic signal has been subsequently obtained by solving the thermoacoustic equation. The acoustic propagation has been simulated by FEM methods in the brain and the skull, where a set of piezoelectric sensors are placed. Last, the final received signals in the sensors have been processed in order to reconstruct the position of the thermal source and, thus, to determine the feasibility and accuracy of acoustic beam monitoring in hadrontherapy.


Assuntos
Simulação por Computador , Terapia com Prótons , Acústica , Método de Monte Carlo , Fenômenos Físicos
2.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035504

RESUMO

Hadrontherapy makes it possible to deliver high doses of energy to cancerous tumors by using the large energy deposition in the Bragg-peak. However, uncertainties in the patient positioning and/or in the anatomical parameters can cause distortions in the calculation of the dose distribution. In order to maximize the effectiveness of heavy particle treatments, an accurate monitoring system of the deposited dose depending on the energy, beam time, and spot size is necessary. The localized deposition of this energy leads to the generation of a thermoacoustic pulse that can be detected using acoustic technologies. This article presents different experimental and simulation studies of the acoustic localization of thermoacoustic pulses captured with a set of sensors around the sample. In addition, numerical simulations have been done where thermo-acoustic pulses are emitted for the specific case of a proton beam of 100 MeV.


Assuntos
Acústica , Algoritmos , Humanos , Neoplasias/radioterapia , Terapia com Prótons , Prótons , Temperatura
3.
Sensors (Basel) ; 18(7)2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973519

RESUMO

This paper presents a study of different types of parametric signals with application to underwater acoustic communications. In all the signals, the carrier frequency is 200 kHz, which corresponds to the resonance frequency of the transducer under study and different modulations are presented and compared. In this sense, we study modulations with parametric sine sweeps (4 to 40 kHz) that represent binary codes (zeros and ones), getting closer to the application in acoustic communications. The different properties of the transmitting signals in terms of bit rate reconstruction, directivity, efficiency, and power needed are discussed as well.

4.
Sensors (Basel) ; 16(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490547

RESUMO

A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

5.
Sensors (Basel) ; 16(6)2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27294937

RESUMO

Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA