Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33213885

RESUMO

The aim of this study was to design and evaluate a prototype of a snake-like endoscopic manipulator robot (SLEMR) and its corresponding automatic controller based on the first order sliding mode theory. The SLEMR was controlled with a set of actuators made of shape memory alloys (SMA). The SLEMR device was constructed with a sequential arrangement of links interconnected by a two degree-of-freedom joint. A parallel agonist-antagonist configuration of actuators was implemented to move each joint. The physical relation between temperature and elongation in SMA forced the execution of the movement in the joint. Elongation-temperature model of the SMA actuator served to get a feasible bound of velocity for each joint. Each pair of SMA actuators was controlled by a first order sliding mode controller. This control design solved the tracking trajectory problem for each joint in the SLEMR because of its robustness against uncertainties and external perturbations. The control action was projected into a feasible implementable set of pulse-width modulated signals which was used to regulate the temperature of the corresponding SMA actuator. The controller designed in this study was experimentally validated in a SLEMR made up by a tridimensional printing technique. The control strategy induced the successful trajectory tracking for all the joints in the SLEMR simultaneously. This characteristic of the control design also enforces the tracking of a reference position by the tip of the final link of the SLEMR. An image acquisition system was used to determine the position of the final actuator in the SLEMR. The effectiveness of the controller proposed in this study was confirmed by the evaluation of the tracking error of the final actuator which approached to a bounded region (less than 1.0 mm) near the origin in a finite-time (0.5 s).

2.
J Adv Res ; 25: 125-136, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32922980

RESUMO

This paper studies the active damping of the oscillations of lightly damped linear systems whose parameters are indeterminate or may change through time. Systems with an arbitrary number of vibration modes are considered. Systems described by partial differential equations, that yield an infinite number of vibration modes, can also be included. In the case of collocated feedback, i.e. the sensor is placed at the same location of the actuator, a simple fractional order differentiation or integration of the measured signal is proposed that provides an effective control: (1) it guarantees a minimum phase margin or damping of the closed-loop system at all vibration modes, (2) this feature is robustly achieved, i.e., it is attained for very large variations or uncertainties of the oscillation frequencies of the system and (3) it is robust to spillover effects, i.e., to the unstabilizing effects of the vibration modes neglected in the controller design (especially important in infinite dimensional systems). Moreover, the sensitivity of the gain crossover frequency to such variations is assessed. Finally, these results are applied to the position control of a single link flexible robot. Simulated results are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...