Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Biomedicines ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255311

RESUMO

The D1R and D3R receptors functionally and synergistically interact in striatonigral neurons. Dopaminergic denervation turns this interaction antagonistic, which is correlated with a decrement in D3nf isoform and an increment in D3R membranal expression. The mechanisms of such changes in D3R are attributed to the dysregulation of the expression of their isoforms. The cause and mechanism of this phenomenon remain unknown. Dopaminergic denervation produces a decrement in D1R and PKA activity; we propose that the lack of phosphorylation of PTB (regulator of alternative splicing) by PKA produces the dysregulation of D3R splicing and changes D3R functionality. By using in silico analysis, we found that D3R mRNA has motifs for PTB binding and, by RIP, co-precipitates with PTB. Moreover, D1R activation via PKA promotes PTB phosphorylation. Acute and 5-day D1R blockade decreases the expression of D3nf mRNA. The 5-day treatment reduces D3R, D3nf, and PTB protein in the cytoplasm and increases D3R in the membrane and PTB in the nucleus. Finally, the blockade of D1R mimics the effect of dopaminergic denervation in D1R and D3R signaling. Thus, our data indicate that through PKA→PTB, D1R modulates D3R splicing, expression, and signaling, which are altered during D1R blockade or the lack of stimulation in dopaminergic denervation.

2.
Front Physiol ; 14: 1286808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033343

RESUMO

CaVγ2 (Stargazin or TARPγ2) is a protein expressed in various types of neurons whose function was initially associated with a decrease in the functional expression of voltage-gated presynaptic Ca2+ channels (CaV) and which is now known to promote the trafficking of the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) towards the cell membrane. Alterations in CaVγ2 expression has been associated with several neurological disorders, such as absence epilepsy. However, its regulation at the transcriptional level has not been intensively addressed. It has been reported that the promoter of the Cacng2 gene, encoding the rat CaVγ2, is bidirectional and regulates the transcription of a long non-coding RNA (lncRNA) in the antisense direction. Here, we investigate the proximal promoter region of the human CACNG2 gene in the antisense direction and show that this region includes two functional cAMP response elements that regulate the expression of a lncRNA called CACNG2-DT. The activity of these sites is significantly enhanced by forskolin, an adenylate cyclase activator, and inhibited by H89, a protein kinase A (PKA) antagonist. Therefore, this regulatory mechanism implies the activation of G protein-coupled receptors and downstream phosphorylation. Interestingly, we also found that the expression of CACNG2-DT may increase the levels of the CaVγ2 subunit. Together, these data provide novel information on the organization of the human CACNG2-DT gene promoter, describe modulatory domains and mechanisms that can mediate various regulatory inputs, and provide initial information on the molecular mechanisms that regulate the functional expression of the CaVγ2 protein.

3.
Life (Basel) ; 13(8)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37629633

RESUMO

Motoneurons receive thousands of excitatory and inhibitory synapses from descending tracts and primary afferent fibers. The excitability of these neurons must be precisely regulated to respond adequately to the requirements of the environment. In this context, GABAA and GABAB receptors regulate motoneuron synaptic strength. GABAA and GABAB receptors are expressed on primary afferent fibers and motoneurons, while in the descending afferent fibers, only the GABAB receptors are expressed. However, it remains to be known where the GABA that activates them comes from since the GABAergic interneurons that make axo-axonic contacts with primary afferents have yet to be identified in the descending afferent terminals. Thus, the main aim of the present report was to investigate how GABAB receptors functionally modulate synaptic strength between Ia afferent fibers, excitatory and inhibitory descending fibers of the dorsolateral funiculus, and spinal motoneurons. Using intracellular recordings from the spinal cord of the turtle, we provide evidence that the GABAB receptor antagonist, CGP55845, not only prevents baclofen-induced depression of EPSPs but also increases motoneuron excitability and enhances the synaptic strength between the afferent fibers and motoneurons. The last action of CGP55845 was similar in excitatory and inhibitory descending afferents. Interestingly, the action of baclofen was more intense in the Ia primary afferents than in the descending afferents. Even more, CGP55845 reversed the EPSP depression induced by the increased concentration of ambient GABA produced by interneuron activation and GABA transporter blockade. Immunofluorescence data corroborated the expression of GABAB receptors in the turtle's spinal cord. These findings suggest that GABAB receptors are extrasynaptic and tonically activated on descending afferent fibers and motoneurons by GABA released from astrocytes and GABAergic interneurons in the cellular microenvironment. Finally, our results also suggest that the antispastic action of baclofen may be due to reduced synaptic strength between descending fibers and motoneurons.

4.
Neuroscience ; 522: 150-164, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169165

RESUMO

Previous studies have shown that in addition to its role within the voltage-gated calcium channel complex in the plasma membrane, the neuronal CaVß subunit can translocate to the cell nucleus. However, little is known regarding the role this protein could play in the nucleus, nor the molecular mechanism used by CaVß to enter this cell compartment. This report shows evidence that CaVß3 has nuclear localization signals (NLS) that are not functional, suggesting that the protein does not use a classical nuclear import pathway. Instead, its entry into the nucleus could be associated with another protein that would function as a carrier, using a mechanism known as a piggyback. Mass spectrometry assays and bioinformatic analysis allowed the identification of proteins that could be participating in the entry of CaVß3 into the nucleus. Likewise, through proximity ligation assays (PLA), it was found that members of the heterogeneous nuclear ribonucleoproteins (hnRNPs) and B56δ, a regulatory subunit of the protein phosphatase 2A (PP2A), could function as proteins that regulate this piggyback mechanism. On the other hand, bioinformatics and site-directed mutagenesis assays allowed the identification of a functional nuclear export signal (NES) that controls the exit of CaVß3 from the nucleus, which would allow the completion of the nuclear transport cycle of the protein. These results reveal a novel mechanism for the nuclear transport cycle of the neuronal CaVß3 subunit.


Assuntos
Canais de Cálcio , Núcleo Celular , Transporte Ativo do Núcleo Celular , Canais de Cálcio/metabolismo , Núcleo Celular/metabolismo , Neurônios/metabolismo
5.
Pflugers Arch ; 475(5): 595-606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36964781

RESUMO

The primary function of dystrophin is to form a link between the cytoskeleton and the extracellular matrix. In addition to this crucial structural function, dystrophin also plays an essential role in clustering and organizing several signaling proteins, including ion channels. Proteomic analysis of the whole rodent brain has stressed the role of some components of the dystrophin-associated glycoprotein complex (DGC) as potential interacting proteins of the voltage-gated Ca2+ channels of the CaV2 subfamily. The interaction of CaV2 with signaling and scaffolding proteins, such as the DGC components, may influence their function, stability, and location in neurons. This work aims to study the interaction between dystrophin and CaV2.1. Our immunoprecipitation data showed the presence of a complex formed by CaV2.1, CaVα2δ-1, CaVß4e, Dp140, and α1-syntrophin in the brain. Furthermore, proximity ligation assays (PLA) showed that CaV2.1 and CaVα2δ-1 interact with dystrophin in the hippocampus and cerebellum. Notably, Dp140 and α1-syntrophin increase CaV2.1 protein stability, half-life, permanence in the plasma membrane, and current density through recombinant CaV2.1 channels. Therefore, we have identified the Dp140 and α1-syntrophin as novel interaction partners of CaV2.1 channels in the mammalian brain. Consistent with previous findings, our work provides evidence of the role of DGC in anchoring and clustering CaV channels in a macromolecular complex.


Assuntos
Distrofina , Proteômica , Animais , Distrofina/genética , Distrofina/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo
6.
PLoS One ; 17(12): e0279186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520928

RESUMO

The overexpression of α2δ-1 is related to the development and degree of malignancy of diverse types of cancer. This protein is an auxiliary subunit of voltage-gated Ca2+ (CaV) channels, whose expression favors the trafficking of the main pore-forming subunit of the channel complex (α1) to the plasma membrane, thereby generating an increase in Ca2+ entry. Interestingly, TLR-4, a protein belonging to the family of toll-like receptors that participate in the inflammatory response and the transcription factor Sp1, have been linked to the progression of glioblastoma multiforme (GBM). Therefore, this report aimed to evaluate the role of the α2δ-1 subunit in the progression of GBM and investigate whether Sp1 regulates its expression after the activation of TLR-4. To this end, the expression of α2δ-1, TLR-4, and Sp1 was assessed in the U87 human glioblastoma cell line, and proliferation and migration assays were conducted using different agonists and antagonists. The actions of α2δ-1 were also investigated using overexpression and knockdown strategies. Initial luciferase assays and Western blot analyses showed that the activation of TLR-4 favors the transcription and expression of α2δ-1, which promoted the proliferation and migration of the U87 cells. Consistent with this, overexpression of α2δ-1, Sp1, and TLR-4 increased cell proliferation and migration, while their knockdown with specific siRNAs abrogated these actions. Our data also suggest that TLR-4-mediated regulation of α2δ-1 expression occurs through the NF-kB signaling pathway. Together, these findings strongly suggest that the activation of TLR-4 increases the expression of α2δ-1 in U87 cells, favoring their proliferative and migratory potential, which might eventually provide a theoretical basis to examine novel biomarkers and molecular targets for the diagnosis and treatment of GBM.


Assuntos
Cálcio , Glioblastoma , Humanos , Cálcio/metabolismo , Glioblastoma/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proliferação de Células
7.
J Neurophysiol ; 128(6): 1555-1564, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350063

RESUMO

Neuronal L-type Ca2+ channels of the CaV1.3 subclass are transmembrane protein complexes that contribute to the pacemaker activity in the adult substantia nigra dopaminergic neurons. The altered function of these channels may play a role in the development and progress of neurodegenerative mechanisms implicated in Parkinson's disease (PD). Although L-type channel expression is precisely regulated, an increased functional expression has been observed in PD. Previously, we showed that Parkin, an E3 enzyme of the ubiquitin-proteasome system (UPS) interacts with neuronal CaV2.2 channels promoting their ubiquitin-mediated degradation. In addition, previous studies show an increase in CaV1.3 channel activity in dopaminergic neurons of the SNc and that Parkin expression is reduced in PD. These findings suggest that the decrease in Parkin may affect the proteasomal degradation of CaV1.3, which helps explain the increase in channel activity. Therefore, the present report aims to gain insight into the degradation mechanisms of the neuronal CaV1.3 channel by the UPS. Immunoprecipitation assays showed the interaction between Parkin and the CaV1.3 channels expressed in HEK-293 cells and neural tissues. Likewise, Parkin overexpression reduced the total and membrane channel levels and decreased the current density. Consistent with this, patch-clamp recordings in the presence of an inhibitor of the UPS, MG132, prevented the effects of Parkin, suggesting enhanced channel proteasomal degradation. In addition, the half-life of the pore-forming CaV1.3α1 protein was significantly reduced by Parkin overexpression. Finally, electrophysiological recordings using a PRKN knockout HEK-293 cell line generated by CRISPR/Cas9 showed increased current density. These results suggest that Parkin promotes the proteasomal degradation of CaV1.3, which may be a relevant aspect for the pathophysiology of PD.NEW & NOTEWORTHY The increased expression of CaV1.3 calcium channels is a crucial feature of Parkinson's disease (PD) pathophysiology. However, the mechanisms that determine this increase are not yet defined. Parkin, an enzyme of the ubiquitin-proteasome system, is known to interact with neuronal channels promoting their ubiquitin-mediated degradation. Interestingly, Parkin mutations also play a role in PD. Here, the degradation mechanisms of CaV1.3 channels and their relationship with the pathophysiology of PD are studied in detail.


Assuntos
Canais de Cálcio Tipo L , Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo
8.
Int J Neurosci ; : 1-10, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35993158

RESUMO

Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease.Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022.Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention.Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.

9.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897646

RESUMO

The CatSper channel localizes exclusively in the flagella of sperm cells. The Catsper1 protein, together with three pore units, is essential for the CatSper Channel formation, which produces flagellum hyperactivation and confers sperm fertility. Catsper1 expression is dependent on Sox transcription factors, which can recognize in vitro at least three Sox binding sites on the promoter. Sox transcription factors have calmodulin-binding domains for nuclear importation. Calmodulin (CaM) is affected by the specific inhibitor calmidazolium (CMZ), which prevents the nuclear transport of Sox factors. In this work, we assess the regulation of the Catsper1 promoter in vivo by Sox factors in the murine testis and evaluate the effects of the inhibitor calmidazolium on the expression of the Casper genes, and the motility and fertility of the sperm. Catsper1 promoter has significant transcriptional activity in vivo; on the contrary, three Sox site mutants in the Catsper1 promoter reduced transcriptional activity in the testis. CaM inhibition affects Sox factor nuclear transport and has notable implications in the expression and production of Catsper1, as well as in the motility and fertility capability of sperm. The molecular mechanism described here might conform to the basis of a male contraceptive strategy acting at the transcriptional level by affecting the production of the CatSper channel, a fundamental piece of male fertility.


Assuntos
Canais de Cálcio , Calmodulina , Animais , Canais de Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Regulação para Baixo , Fertilidade , Imidazóis , Masculino , Camundongos , Fatores de Transcrição SOX/genética , Sêmen/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
10.
Pflugers Arch ; 474(4): 457-468, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235008

RESUMO

Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.


Assuntos
Dor Crônica , Neuralgia , RNA Longo não Codificante , Animais , Dor Crônica/genética , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
San Salvador; s.n; 2022. 77 p.
Tese em Espanhol | BISSAL, LILACS | ID: biblio-1425819

RESUMO

Los pacientes con sepsis y shock séptico presentan una alta mortalidad, representan un importante problema de salud; en estos pacientes, la incidencia de depresión miocárdica es conocida y ha sido documentada. La presente investigación encuentra la mortalidad asociada a la disfunción ventricular derecha, diagnosticada por ecocardiografía transtorácica al pie de cama, que se presenta o desarrolla secundaria a sepsis y su relación con la mortalidad, destacando la utilidad diagnóstica de esta técnica de imagen a través de la evaluación de parámetros ecocardiográficos medíbles y de fácil para cuantificar al lado de la cama del paciente. Metodología: fue un estudio observacional prospectivo analítico de cohorte única, en el Hospital Militar Central, San Salvador, El Salvador, diseñado para incluir pacientes atendidos o ingresados al servicio de medicina interna y cuidados intensivos en un periodo de 4 meses durante el año 2022, que cumplan con los criterios de sepsis y shock séptico, según sepsis-3 utilizando el ecocardiograma transtorácico. Se realizo el ecocardiograma como técnica para evaluar la función del ventrículo derecho (VD) en dos momentos, en las primeras 48 horas y el día 4 desde el diagnóstico de sepsis o shock séptico, definimos disfunción ventricular derecha (DVD) según el tipo: disfunción sistólica VD: TAPSE <1,6 cm, disfunción diastólica VD: cociente E/A <0,8 >2, se cuantificó el balance hídrico acumulado hasta el día 4. Se dio seguimiento a cada paciente para registrar muerte o egreso hospitalario en condición de vivo, relacionando estos desenlaces con disfunción ventricular derecha y balance hídrico. Análisis y resultados: La mortalidad se expreso mediante la razón proporcional de mortalidad intrahospitalaria asociada a DVD, se registró en 46,15%, RR: 1,81, la mortalidad fue mayor en quienes presentaron disfunción diastólica del ventrículo derecho. Interpretación: La disfunción del ventrículo derecho de cualquier tipo o global y el balance de líquidos mayor a 1 litro, se asoció directamente con una mayor mortalidad intrahospitalaria.


Patients with sepsis and septic shock carry high mortality even today, which is why it represents an important health problem; In these patients, the incidence of myocardial depression is known and has been documented. Research: to know the associated mortality with right ventricular dysfunction, diagnosed by transthoracic echocardiography at the bedside, which presents or develops secondary to sepsis and its relationship with mortality, highlighting the diagnostic utility of this imaging technique through the evaluation of measurable echocardiographic parameters and easy to quantify at the patient's bedside. Study Design and Methods: The Study is Observational Prospective Analytical Single Cohort, Monocentric (Hospital Militar Central, San Salvador, El Salvador). designed to include a cohort treated or admitted to the internal medicine and intensive care service in a period of 4 months during the year 2022, who meet the criteria for sepsis and septic shock, according to sepsis-3, a transthoracic echocardiogram was used as a research technique for those who had their right ventricular(RV) function evaluated in two moments, the first 48 hours and on day 4 from the diagnosis of sepsis or septic shock, to To document the presence or absence of an exposure factor: Right Ventricular Dysfunction (DVD) of any type, we defined RV Systolic Dysfunction: TAPSE <1.6 cm, RV Diastolic Dysfunction: E/A ratio <0.8 >2, and the accumulated fluid balance was quantified up to the day 4. Consecutively, each patient was followed up to record in-hospital death or Discharge in Living Condition, relating these outcomes with Right ventricular dysfunction and fluid balance. Results: The proportional ratio of Intrahospital Mortality due to DVD was recorded at 46.15%, RR: 1.81, Mortality was higher in those who presented diastolic dysfunction of the Right Ventricle. Interpretation: Right ventricular dysfunction of any type or global together with fluid balance greater than 1 liter, was directly associated with increased in-hospital mortality.


Assuntos
Ecocardiografia , Sepse , Coração
12.
Arq Neuropsiquiatr ; 79(10): 904-911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34706021

RESUMO

BACKGROUND: The co-occurrence of chronic pain and sleep disturbance contribute to a significant functional and social impact in older adults. However, there are no validated instruments to measure sleep disturbance and pain in this population that could be used to screen or diagnose individuals or monitor treatment effectiveness. OBJECTIVE: Our aim was to develop and validate a brief, practical, and comprehensive tool to assess the impact of co-occurring pain and sleep disturbance in older adults. METHODS: Development and validation of a measurement tool for assessing pain and sleep in older adults consisting of seven items. RESULTS: We applied the "Sleep Assessment Instrument for Pain in older adults" (SAIOAP) in a sample of 100 older individuals. A Cronbach's alpha of 0.602 indicated a moderate level of reliability, and item-total correlations of ≥0.4 for all items indicated good homogeneity. There were statistically significant correlations between the SAIOAP and sleep quality (PSQI, r=61.5), pain intensity (VNS, r=30.5), the multidimensional impacts of pain (GPM, r=40.5), depression (GEAP, r=45.5), comorbidity (r=27.9), and medication use (r=30.4). A ROC curve indicated a sensitivity of 73.2% and a specificity of 79.1% in relation to the prediction of sleep disturbances associated with pain in older adults. CONCLUSIONS: The SAIOAP presented adequate metric properties and was demonstrated to be a simple and practical tool for the assessment of the impact of pain on sleep in older adults.


Assuntos
Dor Crônica , Idoso , Dor Crônica/diagnóstico , Humanos , Medição da Dor , Psicometria , Reprodutibilidade dos Testes , Sono , Inquéritos e Questionários
13.
Arq. neuropsiquiatr ; 79(10): 904-911, Oct. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1345312

RESUMO

Abstract Background: The co-occurrence of chronic pain and sleep disturbance contribute to a significant functional and social impact in older adults. However, there are no validated instruments to measure sleep disturbance and pain in this population that could be used to screen or diagnose individuals or monitor treatment effectiveness. Objective: Our aim was to develop and validate a brief, practical, and comprehensive tool to assess the impact of co-occurring pain and sleep disturbance in older adults. Methods: Development and validation of a measurement tool for assessing pain and sleep in older adults consisting of seven items. Results: We applied the "Sleep Assessment Instrument for Pain in older adults" (SAIOAP) in a sample of 100 older individuals. A Cronbach's alpha of 0.602 indicated a moderate level of reliability, and item-total correlations of ≥0.4 for all items indicated good homogeneity. There were statistically significant correlations between the SAIOAP and sleep quality (PSQI, r=61.5), pain intensity (VNS, r=30.5), the multidimensional impacts of pain (GPM, r=40.5), depression (GEAP, r=45.5), comorbidity (r=27.9), and medication use (r=30.4). A ROC curve indicated a sensitivity of 73.2% and a specificity of 79.1% in relation to the prediction of sleep disturbances associated with pain in older adults. Conclusions: The SAIOAP presented adequate metric properties and was demonstrated to be a simple and practical tool for the assessment of the impact of pain on sleep in older adults.


RESUMO Introdução: A co-ocorrência de dor crônica e de distúrbios do sono contribuem para um impacto funcional e social negativo em idosos. Porém, o binômio dor-sono não foi explorado em relação a questionários para idosos, a fim de auxiliar na triagem, no diagnóstico ou no monitoramento da eficácia do tratamento médico. Objetivo: Desenvolver e validar um instrumento breve, prático e abrangente para avaliar a concorrência de condições álgicas crônicas e distúrbios de sono em idosos. Métodos: Estudo descritivo e qualitativo de metodologia de desenvolvimento e validação de instrumento de medida para avaliação de dor e sono em idosos, composto por sete itens. Após a fundamentação teórica, desenvolveram-se os itens do instrumento, seguidos de um estudo quantitativo (validação), em que testamos pacientes idosos com dor crônica. Resultados: Aplicou-se o Instrumento de Avaliação de Sono para Dor em Idosos (IASID) a uma amostra de 100 idosos. Alcançou-se o alfa de Cronbach (0,602) de boa homogeneidade por correlação item-total (≥0,4). Encontramos correlações estatisticamente significativas entre o IASID e a qualidade do sono (PSQI, r=61,5%); a intensidade da dor (NVS, r=30,5%); seus impactos (GPM, r=40,5); depressão (GEAP, r=45,5%); comorbidades (r=27,9) e uso de medicamentos (r=30,4). A curva ROC apontou sensibilidade de 73,2% e especificidade de 79,1% para predição de distúrbios do sono associados à dor crônica em idosos. Conclusões: O IASID apresentou propriedades métricas adequadas e demonstrou ser uma ferramenta simples e prática para a avaliação do impacto da dor no sono em idosos.


Assuntos
Humanos , Idoso , Dor Crônica/diagnóstico , Psicometria , Sono , Medição da Dor , Inquéritos e Questionários , Reprodutibilidade dos Testes
14.
Physiol Rep ; 9(16): e14984, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34409771

RESUMO

Chronic pain is an incapacitating condition that affects a large population worldwide. Until now, there is no drug treatment to relieve it. The impairment of GABAergic inhibition mediated by GABAA receptors (GABAA R) is considered a relevant factor in mediating chronic pain. Even though both synaptic and extrasynaptic GABAA inhibition are present in neurons that process nociceptive information, the latter is not considered relevant as a target for the development of pain treatments. In particular, the extrasynaptic α5 GABAA Rs are expressed in laminae I-II of the spinal cord neurons, sensory neurons, and motoneurons. In this review, we discuss evidence showing that blockade of the extrasynaptic α5 GABAA Rs reduces mechanical allodynia in various models of chronic pain and restores the associated loss of rate-dependent depression of the Hoffmann reflex. Furthermore, in healthy animals, extrasynaptic α5 GABAA R blockade induces both allodynia and hyperalgesia. These results indicate that this receptor may have an antinociceptive and pronociceptive role in healthy and chronic pain-affected animals, respectively. We propose a hypothesis to explain the relevant role of the extrasynaptic α5 GABAA Rs in the processing of nociceptive information. The data discussed here strongly suggest that this receptor could be a valid pharmacological target to treat chronic pain states.


Assuntos
Dor Crônica/metabolismo , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/fisiopatologia , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/uso terapêutico , Humanos , Nociceptividade , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia
15.
Neuroscience ; 471: 20-31, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34303780

RESUMO

Voltage-gated Ca2+ (CaV) channels regulate multiple cell processes, including neurotransmitter release, and have been associated with several pathological conditions, such as neuropathic pain. Cdk5, a neuron-specific kinase, may phosphorylate CaV channels, altering their functional expression. During peripheral nerve injury, upregulation of CaV channels and Cdk5 in the dorsal root ganglia (DRG) and the spinal cord, has been correlated with allodynia. We recently reported an increase in the amplitude of the C component of the compound action potential (cAP) of afferent fibers in animals with allodynia induced by L5-6 spinal nerve ligation (SNL), recorded in the corresponding dorsal roots. This was related to an increase in T-type (CaV3.2) channels generated by Cdk5-mediated phosphorylation. Here, we show that CaV channel functional expression is also altered in the L4 adjacent intact afferent fibers in rats with allodynia induced by L5-6 SNL. Western blot analysis showed that both Cdk5 and CaV3.2 total levels are not increased in the DRG L3-4, but their subcellular distribution changes by concentrating on the neuronal soma. Likewise, the Cdk5 inhibitor olomoucine affected the rapid and the slow C components of the cAP recorded in the dorsal roots. Patch-clamp recordings revealed an increase in T- and N-type currents recorded in the soma of acute isolated L3-4 sensory neurons after L5-6 SNL, which was prevented by olomoucine. These findings suggest changes in CaV channels location and function in L3-4 afferent fibers associated with Cdk5-mediated phosphorylation after L5-6 SNL, which may contribute to nerve injury-induced allodynia.


Assuntos
Neuralgia , Nervos Espinhais , Potenciais de Ação , Animais , Quinase 5 Dependente de Ciclina , Gânglios Espinais , Hiperalgesia , Neurônios Aferentes , Ratos , Ratos Sprague-Dawley
16.
Neurosci Res ; 170: 50-58, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32987088

RESUMO

Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.


Assuntos
Neurônios Aferentes , Ácido gama-Aminobutírico , Axônios , Gânglios Espinais , Neuroglia , Receptores de GABA-A
17.
Pain ; 161(12): 2674-2689, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773603

RESUMO

The chronification of pain can be attributed to changes in membrane receptors and channels underlying neuronal plasticity and signal transduction largely within nociceptive neurons that initiate and maintain pathological pain states. These proteins are subject to dynamic modification by posttranslational modifications, creating a code that controls protein function in time and space. Phosphorylation is an important posttranslational modification that affects ∼30% of proteins in vivo. Increased phosphorylation of various nociceptive ion channels and of their modulators underlies sensitization of different pain states. Cyclin-dependent kinases are proline-directed serine/threonine kinases that impact various biological and cellular systems. Cyclin-dependent kinase 5 (Cdk5), one member of this kinase family, and its activators p35 and p39 are expressed in spinal nerves, dorsal root ganglia, and the dorsal horn of the spinal cord. In neuropathic pain conditions, expression and/or activity of Cdk5 is increased, implicating Cdk5 in nociception. Experimental evidence suggests that Cdk5 is regulated through its own phosphorylation, through increasing p35's interaction with Cdk5, and through cleavage of p35 into p25. This narrative review discusses the molecular mechanisms of Cdk5-mediated regulation of target proteins involved in neuropathic pain. We focus on Cdk5 substrates that have been linked to nociceptive pathways, including channels (eg, transient receptor potential cation channel and voltage-gated calcium channel), proteins involved in neurotransmitter release (eg, synaptophysin and collapsin response mediator protein 2), and receptors (eg, glutamate, purinergic, and opioid). By altering the phosphoregulatory "set point" of proteins involved in pain signaling, Cdk5 thus appears to be an attractive target for treating neuropathic pain conditions.


Assuntos
Quinase 5 Dependente de Ciclina , Neuralgia , Quinase 5 Dependente de Ciclina/metabolismo , Gânglios Espinais/metabolismo , Humanos , Fosforilação , Transdução de Sinais
18.
Am J Physiol Endocrinol Metab ; 319(1): E232-E244, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369417

RESUMO

Voltage-gated Ca2+ (CaV) channels are expressed in endocrine cells where they contribute to hormone secretion. Diverse chemical messengers, including epidermal growth factor (EGF), are known to affect the expression of CaV channels. Previous studies have shown that EGF increases Ca2+ currents in GH3 pituitary cells by increasing the number of high voltage-activated (HVA) CaV channels at the cell membrane, which results in enhanced prolactin (PRL) secretion. However, little is known regarding the mechanisms underlying this regulation. Here, we show that EGF actually increases the expression of the CaVα2δ-1 subunit, a key molecular component of HVA channels. The analysis of the gene promoter encoding CaVα2δ-1 (CACNA2D1) revealed binding sites for transcription factors activated by the Ras/Raf/MEK/ERK signaling cascade. Chromatin immunoprecipitation and site-directed mutagenesis showed that ELK-1 is crucial for the transcriptional regulation of CACNA2D1 in response to EGF. Furthermore, we found that EGF increases the membrane expression of CaVα2δ-1 and that ELK-1 overexpression increases HVA current density, whereas ELK-1 knockdown decreases the functional expression of the channels. Hormone release assays revealed that CaVα2δ-1 overexpression increases PRL secretion. These results suggest a mechanism for how EGF, by activating the Ras/Raf/MEK/ERK/ELK-1 pathway, may influence the expression of HVA channels and the secretory behavior of pituitary cells.


Assuntos
Canais de Cálcio Tipo L/genética , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Proteínas Elk-1 do Domínio ets/genética , Quinases raf/genética , Proteínas ras/genética , Animais , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Técnicas de Silenciamento de Genes , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ratos , Transdução de Sinais , Proteínas Elk-1 do Domínio ets/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo
19.
Biochem Biophys Res Commun ; 524(1): 255-261, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983427

RESUMO

Neurotransmission is one of the most important processes in neuronal communication and depends largely on Ca2+ entering synaptic terminals through voltage-gated Ca2+ (CaV) channels. Although the contribution of L-type CaV channels in neurotransmission has not been unambiguously established, increasing evidence suggests a role for these proteins in noradrenaline, dopamine, and GABA release. Here we report the regulation of L-type channels by Cdk5, and its possible effect on GABA release in the substantia nigra pars reticulata (SNpr). Using patch-clamp electrophysiology, we show that Cdk5 inhibition by Olomoucine significantly increases current density through CaV1.3 (L-type) channels heterologously expressed in HEK293 cells. Likewise, in vitro phosphorylation showed that Cdk5 phosphorylates residue S1947 in the C-terminal region of the pore-forming subunit of CaV1.3 channels. Consistent with this, the mutation of serine into alanine (S1947A) prevented the regulation of Cdk5 on CaV1.3 channel activity. Our data also revealed that the inhibition of Cdk5 increased the frequency of high K+-evoked miniature inhibitory postsynaptic currents in rat SNpr neurons, acting on L-type channels. These results unveil a novel regulatory mechanism of GABA release in the SNpr that involves a direct action of Cdk5 on L-type channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Potenciais Pós-Sinápticos Inibidores , Neostriado/metabolismo , Receptores de GABA-A/metabolismo , Substância Negra/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/química , Células HEK293 , Humanos , Masculino , Fosforilação , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
20.
J Neurosci ; 40(2): 283-296, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31744861

RESUMO

Voltage-gated T-type Ca2+ (CaV3) channels regulate diverse physiological events, including neuronal excitability, and have been linked to several pathological conditions such as absence epilepsy, cardiovascular diseases, and neuropathic pain. It is also acknowledged that calcium/calmodulin-dependent protein kinase II and protein kinases A and C regulate the activity of T-type channels. Interestingly, peripheral nerve injury induces tactile allodynia and upregulates CaV3.2 channels and cyclin-dependent kinase 5 (Cdk5) in dorsal root ganglia (DRG) and spinal dorsal horn. Here, we report that recombinant CaV3.2 channels expressed in HEK293 cells are regulatory targets of Cdk5. Site-directed mutagenesis showed that the relevant sites for this regulation are residues S561 and S1987. We also found that Cdk5 may regulate CaV3.2 channel functional expression in rats with mechanical allodynia induced by spinal nerve ligation (SNL). Consequently, the Cdk5 inhibitor olomoucine affected the compound action potential recorded in the spinal nerves, as well as the paw withdrawal threshold. Likewise, Cdk5 expression was upregulated after SNL in the DRG. These findings unveil a novel mechanism for how phosphorylation may regulate CaV3.2 channels and suggest that increased channel activity by Cdk5-mediated phosphorylation after SNL contributes nerve injury-induced tactile allodynia.SIGNIFICANCE STATEMENT Neuropathic pain is a current public health challenge. It can develop as a result of injury or nerve illness. It is acknowledged that the expression of various ion channels can be altered in neuropathic pain, including T-type Ca2+ channels that are expressed in sensory neurons, where they play a role in the regulation of cellular excitability. The present work shows that the exacerbated expression of Cdk5 in a preclinical model of neuropathic pain increases the functional expression of CaV3.2 channels. This finding is relevant for the understanding of the molecular pathophysiology of the disease. Additionally, this work may have a substantial translational impact, since it describes a novel molecular pathway that could represent an interesting therapeutic alternative for neuropathic pain.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Potenciais de Ação/fisiologia , Animais , Células HEK293 , Humanos , Ligadura , Masculino , Traumatismos dos Nervos Periféricos/metabolismo , Fosforilação , Ratos , Ratos Wistar , Nervos Espinhais/lesões , Nervos Espinhais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...