Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731299

RESUMO

African swine fever (ASF) is a severe viral disease characterized by high lethality in suids and caused by the African Swine Fever Virus (ASFV). The ASF genotype I virus was introduced to Europe in 1957, marking the onset of the first European epidemic wave. In 2007, ASFV genotype II was detected in Georgia, affecting domestic pigs and wild boars before spreading to various European and extra-European countries, including Italy. The first case of ASFV in Italy was documented on 7 January 2022, in a wild boar in the Piedmont region. Since then, several ASFV-positive wild boar carcasses have been identified in the Piedmont and Liguria regions. By June 2023, ASFV had spread to Lombardy, one of the major pig-producing regions in northern Italy; the virus was first detected in early summer in wild boar carcasses. Two months later, it was diagnosed in a commercial pig farm as a consequence of the disease's spread amongst wild boars and an increase in the viral environmental load. This report aims to describe the features of ASFV domestic pig outbreaks that occurred in the Zinasco municipality (Lombardy) and the joint efforts to mitigate potential direct and indirect economic impacts on the Italian and global pig industry. The epidemiological investigation and the measures implemented, which were all performed according to national and European regulations, as well as exceptional ad hoc measures aimed at protecting the pig industry, are described in order to provide a practical and effective approach to combating ASF.

2.
Viruses ; 16(4)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675978

RESUMO

African swine fever (ASF) is a disease that is a growing threat to the global swine industry. Regulations and restrictions are placed on swine movement to limit the spread of the virus. However, these are costly and time-consuming. Therefore, this study aimed to determine if high-pressure processing (HPP) sanitization techniques would be effective against the ASF virus. Here, it was hypothesized that HPP could inactivate or reduce ASF virus infectivity in tissue homogenates. To test this hypothesis, 30 aliquots of each homogenate (spleen, kidney, loin) were challenge-infected with the Turin/83 strain of ASF, at a 10 7.20 median hemadsorption dose (HAD)50/mL. Subsequently, eight aliquots of each homogenate were treated with 600 millipascal (600 MPa) HPP for 3, 5, and 7 min. Six untreated aliquots were used as the controls. Virological results showed a reduction in the viral titer of more than 7-log. These results support the validity of the study hypothesis since HPP treatment was effective in inactivating ASFV in artificially prepared samples. Overall, this study suggests the need for further investigation of other ASFV-contaminated meat products.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/fisiologia , Suínos , Febre Suína Africana/virologia , Pressão , Rim/virologia , Carga Viral , Inativação de Vírus , Baço/virologia
3.
Vaccines (Basel) ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38543941

RESUMO

African swine fever (ASF) is a contagious disease of wild boar and domestic pigs notifiable to the World Organisation for Animal Health due to its high socio-economic impact. ASF is caused by the complex ASF virus (ASFV), and it can present different clinical manifestations that can be confused with other diseases; for this reason, laboratory testing is necessary for the proper diagnosis of clinically suspected animals. Despite the efforts put into it over decades, no treatment or safe vaccine is globally available, and disease control is based on early diagnosis and the implementation of strict biosecurity measures. In this context, rapid tests have the potential to accelerate and facilitate the identification of infected animals by giving fast on-site results. In this work, we improved the available point-of-care assays for the diagnosis of the disease by the development of a more specific antigen test and a more sensitive antibody test. This antibody detection test allowed for the earlier detection of infected animals than two commercial indirect ELISAs (statistically significant). Moreover, we developed a combined dual rapid test, unifying, in the same cassette, an antigen detection strip and an antibody detection strip. In this study, we confirmed that this combo approach is a useful tool for implementing rapid tests in the field since it increases the percentage of positive samples detected, even when PCR turns negative, while maintaining a good specificity.

4.
Animals (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338097

RESUMO

The African Swine Fever Virus (ASFV) is a DNA virus of the Asfarviridae family, Asfivirus genus. It is responsible for massive losses in pig populations and drastic direct and indirect economic impacts. The ever-growing handling of ASFV pathological material in laboratories, necessary for either diagnostic or research activities, requires particular attention to avoid accidental virus release from laboratories and its detrimental economic and environmental effects. Recently, the Commission Delegated Regulation (EU) 2020/689 of 17 December 2019 repealed the Commission Decision of 26 May 2003 reporting an ASF diagnostic manual (2003/422/EC) with the minimum and supplementary requirements for ASF laboratories. This decision generated a regulatory gap that has not been addressed yet. This paper aims to describe the Italian National Reference Laboratory (NRL) efforts to develop an effective and reliable biological containment tool for ASF laboratories and animal facilities. The tool consists of comprehensive and harmonized structural and procedural requirements for ASF laboratories and animal facilities that have been developed based on both current and repealed legislation, further entailing a risk assessment and internal audit as indispensable tools to design, adjust, and improve biological containment measures.

5.
Vaccines (Basel) ; 12(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38400144

RESUMO

Seronegative latent carriers (SNLCs) are animals that carry the virus without detectable antibodies and pose a risk for disease transmission and diagnostic challenges, suggesting the importance of consideration of marker vaccines in managing them. Therefore, in this study, we evaluated two modified live infectious bovine rhinotracheitis (IBR) marker vaccines (single and double deletions) for their ability to generate SNLC calves. These vaccines were administered to four groups (n = 3 in each group) of three-month-old calves in the presence or absence of passive immunity. Three hundred days after the first vaccination and after confirming the IBR seronegativity of all animals, dexamethasone was administered intravenously for five consecutive days. Only animals immunized with the modified live IBR marker vaccine (single deletion) in the absence of passive immunity exhibited a more enduring immune response than those vaccinated in the presence of passive immunity. Moreover, the administration of a modified live IBR marker vaccine (double deletion) to calves with passive immunity generated SNLC. These findings underscore the potential of live IBR marker vaccine (double-deletions) to aid serological diagnostic tools and develop vaccination protocols in achieving the desired immune response, particularly in the context of latent carrier status, offering valuable insights into optimizing vaccination strategies for effective IBR control.

6.
Viruses ; 16(1)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275960

RESUMO

Bovine alphaherpesvirus-1 (BoAHV-1) infection is common in cattle worldwide. However, information on the spread of BoAHV-1-circulating strains in Italy remains limited. In this study, we investigated an outbreak characterized by severe respiratory symptoms in a cattle herd (n = 30) located in Central Italy. BoAHV-1 was isolated from three cattle in a cell culture, which confirmed viral infection. Next, we characterized one (16453/07 TN) of the three isolates of BoAHV-1 using whole-genome sequencing. BLASTn and phylogenetic analysis revealed a nucleotide identity >99% with all BoAHV-1 strains belonging to subtype 1.1, highlighting the genetic stability of the virus. This study reports the first full genomic characterization of a BoAHV-1 isolate in Italy, enriching our understanding of the genetic characteristics of the circulating BoAHV-1 strain in Italy.


Assuntos
Doenças dos Bovinos , Animais , Bovinos , Filogenia , Genômica , Genoma Viral , Surtos de Doenças/veterinária , Itália/epidemiologia
7.
Vaccines (Basel) ; 11(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38140263

RESUMO

Lv17/WB/Rie1-Δ24 was produced via illegitimate recombination mediated by low-dilution serial passage in the Cos7 cell line and isolated on PAM cell culture. The virus contains a huge ~26.4 Kb deletion in the left end of its genome. Lv17/WB/Rie1-ΔCD-ΔGL was generated via homologous recombination, crossing two ASFV strains (Lv17/WB/Rie1-ΔCD and Lv17/WB/Rie1-ΔGL containing eGFP and mCherry markers) during PAM co-infection. The presence of unique parental markers in the Lv17/WB/Rie1-ΔCD-ΔGL genome indicates at least two recombination events during the crossing, suggesting that homologous recombination is a relatively frequent event in the ASFV genome during replication in PAM. Pigs infected with Lv17/WB/Rie1-Δ24 and Lv17/WB/Rie1/ΔCD-ΔGL strains have shown mild clinical signs despite that ASFV could not be detected in their sera until a challenge infection with the Armenia/07 ASFV strain. The two viruses were not able to induce protective immunity in pigs against a virulent Armenia/07 challenge.

8.
Animals (Basel) ; 13(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835604

RESUMO

African swine fever (ASF) is a severe viral disease of domestic pigs and Eurasian wild boars (Sus scrofa) caused by the African swine fever virus (ASFV). ASF is endemic in sub-Saharan Africa, where 24 genotypes of the virus have been reported. Between the late 1950s and the early 1980s, genotype I ASFV emerged in Europe, including Italy. In June 2007, a second ASF epidemic wave caused by genotype II was registered, involving several European and extra-European countries, including Italy in 2022. The present paper aims to provide the state of the art of ASF in Italy, describing the course of ASF in wild boars and domestic pigs as an example of multiple concurring different scenarios. Sardinia is coping with the last phase of the eradication of the disease by applying the exit strategy. Conversely, four clusters of infection located in North, Central, and South Italy are still ongoing. The unique and complex Italian experience in ASF-controlling may be useful to increase know-how on the efficacy of strategies and measures, as well as issues that could be further improved.

9.
Vaccines (Basel) ; 11(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37515092

RESUMO

African swine fever virus (ASFV) is the etiological agent of a haemorrhagic disease that threatens the global pig industry. There is an urgency to develop a safe and efficient vaccine, but the knowledge of the immune-pathogenetic mechanisms behind ASFV infection is still very limited. In this paper, we evaluated the haematological and immunological parameters of domestic pigs vaccinated with the ASFV Lv17/WB/Rie1 strain or its derived mutant Lv17/WB/Rie1/d110-11L and then challenged with virulent Armenia/07 ASFV. Circulating levels of C-reactive protein (CRP), 13 key cytokines and 11 haematological parameters were evaluated throughout the study. Lv17/WB/Rie1 triggered an inflammatory response, with increased levels of CRP and pro-inflammatory cytokines, and induced lymphopenia, thrombocytopenia and a decline in red blood cell (RBC) parameters, although this was transitory. Lv17/WB/Rie1/d110-11L triggered only transitory thrombocytopenia and a mild inflammatory reaction, with no increase in serum levels of pro-inflammatory cytokines, but it raised IL-1Ra levels. Both strains counteracted several adverse reactions elicited by virulent challenge, like thrombocytopenia, a decline in RBC parameters, and inflammation. Within this paper, we provided a deep portrayal of the impact of diverse ASFV strains on the domestic pig's immune system. A better understanding of these immune-pathological mechanisms would help to design suitable vaccines against this disease.

10.
Microbiol Resour Announc ; 12(6): e0136422, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37166310

RESUMO

We report here the whole-genome sequence of the African swine fever virus (ASFV) genotype II, strain 20355/RM/2022_Italy, identified in a wild boar in the city of Rome (Lazio region, Italy) in April 2022.

11.
Vaccines (Basel) ; 11(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242994

RESUMO

European regulations on the control of infectious diseases provide measures to control Bovine alphaherpesvirus 1 (BoHV-1) infection in both cattle and buffalo. Owing to the reported serological cross-reactivity between BoHV-1 and Bubaline alphaherpesvirus 1 (BuHV-1), we hypothesized a new immunization protocol using BoHV-1 gE-deleted marker vaccines could protect water buffalo against BuHV-1. Five water buffaloes devoid of BoHV-1/BuHV-1-neutralizing antibodies were immunized with two commercial BoHV-1 gE-deleted marker vaccines at 0, 30, 210, and 240 post-vaccination days (PVDs). Five additional water buffaloes were used as controls. At 270 PVD (0 post-challenge days (PCDs), all animals were challenged intranasally with wild-type (wt) BuHV-1. The vaccinated animals produced humoral immunity (HI) as early as PVD 30 whereas, in control animals, antibodies were detected on PCD 10. After challenge infection, HI significantly increased in vaccinated animals compared to that in controls. Real-time PCR for gB revealed viral shedding in vaccinated animals from PCDs 2 to 10. In contrast, positive results were observed from PCDs 2 to 15 in the unvaccinated control group. Although the findings indicated the possible protection capabilities of the tested protocol, these findings did not support its protective roles in water buffaloes against wt-BuHV-1.

12.
Vaccines (Basel) ; 11(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37112697

RESUMO

Bovine Alphaherpesvirus 1 (BoHV-1) is one of the major respiratory pathogens in cattle worldwide. Infection often leads to a compromised host immune response that contributes to the development of the polymicrobial disease known as "bovine respiratory disease". After an initial transient phase of immunosuppression, cattle recover from the disease. This is due to the development of both innate and adaptive immune responses. With respect to adaptive immunity, both humoral and cell-mediated immunity are required to control infection. Thus, several BoHV-1 vaccines are designed to trigger both branches of the adaptive immune system. In this review, we summarize the current knowledge on cell-mediated immune responses directed against BoHV-1 infection and vaccination.

13.
Vaccines (Basel) ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112759

RESUMO

African swine fever (ASF) is a highly lethal hemorrhagic viral disease that causes extensive economic and animal welfare losses in the Eurasian pig (Sus scrofa) population. To date, no effective and safe vaccines have been marketed against ASF. A starting point for vaccine development is using naturally occurring attenuated strains as a vaccine base. Here, we aimed to remove the multigene family (MGF) 110 gene of unknown function from the Lv17/WB/Rie1 genome to improve the usability of the virus as a live-attenuated vaccine, reducing unwanted side effects. The MGF 110-11L gene was deleted using the CRISPR/Cas9 method, and the safety and efficacy of the virus were tested in pigs after isolation. The vaccine candidates administered at high doses showed reduced pathogenicity compared to the parental strain and induced immunity in vaccinated animals, although several mild clinical signs were observed. Although Lv17/WB/Rie1/d110-11L cannot be used as a vaccine in its current form, it was encouraging that the undesirable side effects of Lv17/WB/Rie1 at high doses can be reduced by additional mutations without a significant reduction in its protective capacity.

14.
Open Vet J ; 13(3): 358-364, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37026062

RESUMO

Background: African Swine Fever (ASF) is an infectious disease that affects domestic pig and wild boar populations. The ASF Virus (ASFV) has a genome characterized by a very complex DNA (170-193 kb) that encodes for more than 200 different proteins. Among these, the highly immunogenic phosphoprotein p30 plays a fundamental role in the induction of specific antibodies. To date, the lack of a vaccine against the disease requires continuous studies to improve knowledge about the virus and the development of new tests in addition to virological ones. Aim: The aim of this work was to produce specific monoclonal antibodies (mAbs) against the p30 protein of ASFV, which could find useful applications in routine diagnostics and the implementation of new diagnostic tools. Methods: ASFV p30 encoding gene was amplified and used for the generation of the recombinant baculovirus by transfection of the Sf21 insect cells. The recombinant protein was analyzed by immunofluorescence assay, purified, and used for mice Balb-c immunization. The hybridomas obtained were cultured and screened, using an indirect Enzyme-linked Immunosorbent Assay (iELISA), in order to select clones that secrete the mAbs of interest. Results: The expression of recombinant p30 protein was assessed using direct immunofluorescence. The purified p30 protein fractions were analyzed by Coomassie gels staining confirming the presence of bands with a molecular weight of 30 kDa and used for the immunization of Balb-c mice. Six clones of pure hybridomas secreting the specific mAbs against recombinant p30 were obtained and tested in iELISA. The mAbs were also characterized by Western blot and immunofluorescence assay. The best results were obtained with the anti-p30 mAb 2B8E10 clone which showed high reactivity with both recombinant and viral p30 protein, respectively. Conclusion: In this work, a recombinant p30 protein produced in an insect cell system was purified and used to immunize Balb-c mice. Six anti-p30 mAbs-secreting hybridomas clone cells were obtained. These mAbs displayed high reactivity against the recombinant protein, but only 2B8E10 mAb showed excellent functionality against the p30 protein produced by ASFV. These results open the possibility to develop different diagnostic assays.


Assuntos
Anticorpos Monoclonais , Fosfoproteínas , Proteínas Virais , Anticorpos Monoclonais/imunologia , Proteínas Recombinantes/imunologia , Febre Suína Africana , Camundongos Endogâmicos BALB C , Camundongos , Animais , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Baculoviridae , Células Sf9 , Spodoptera , Feminino
15.
Pathogens ; 12(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36986294

RESUMO

African swine fever (ASF) is responsible for important socio-economic effects in the global pig industry, especially for countries with large-scale piggery sectors. In January 2022, the African swine fever virus (ASFV) genotype II was identified in a wild boar population in mainland Italy (Piedmont region). This study describes the molecular characterization, by Sanger and next-generation sequencing (NGS), of the first index case 632/AL/2022 and of another isolate (2802/AL/2022) reported in the same month, in close proximity to the first, following multiple ASF outbreaks. Phylogenetic analysis based on the B646L gene and NGS clustered the isolates 632/AL/2022 and 2802/AL/2022 within the wide and most homogeneous p72 genotype II that includes viruses from European and Asian countries. The consensus sequence obtained from the ASFV 2802/AL/2022 isolate was 190,598 nucleotides in length and had a mean GC content of 38.38%. At the whole-genome level, ASF isolate 2802/AL/2022 showed a close genetic correlation with the other representative ASFV genotype II strains isolated between April 2007 and January 2022 from wild and domestic pigs in Eastern/Central European (EU) and Asian countries. CVR subtyping clustered the two Italian ASFV strains within the major CVR variant circulating since the first virus introduction in Georgia in 2007. Intergenic region I73R-I329L subtyping placed the Italian ASFV isolates within the variant identical to the strains frequently identified among wild boars and domestic pigs. Presently, given the high sequence similarity, it is impossible to trace the precise geographic origin of the virus at a country level. Moreover, the full-length sequences available in the NCBI are not completely representative of all affected territories.

16.
Talanta ; 258: 124443, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933298

RESUMO

African swine fever (ASF) is a severe haemorrhagic infectious disease affecting suids, thus representing a great economic concern. Considering the importance of the early diagnosis, rapid point of care testing (POCT) for ASF is highly demanded. In this work, we developed two strategies for the rapid onsite diagnosis of ASF, based on Lateral Flow Immunoassay (LFIA) and Recombinase Polymerase Amplification (RPA) techniques. The LFIA was a sandwich-type immunoassay exploiting a monoclonal antibody directed towards the p30 protein of the virus (Mab). The Mab was anchored onto the LFIA membrane to capture the ASFV and was also labelled with gold nanoparticles for staining the antibody-p30 complex. However, the use of the same antibody for capturing and as detector ligand showed a significant competitive effect for antigen binding, so required an experimental design to minimize reciprocal interference and maximize the response. The RPA assay, employing primers to the capsid protein p72 gene and an exonuclease III probe, was performed at 39 °C. The limit of detection of the method was assessed using a plasmid encoding the target gene and resulted in 5 copy/µL. The new LFIA and RPA were applied for ASFV detection in the animal tissues usually analysed by conventional assays (i.e., real-time PCR), such as kidney, spleen, and lymph nodes. A simple and universal virus extraction protocol was applied for sample preparation, followed by DNA extraction and purification for the RPA. The LFIA only required the addition of 3% H2O2 to limit matrix interference and prevent false positive results. The two rapid methods (25 min and 15 min were needed to complete the analysis for RPA and LFIA, respectively) showed high diagnostic specificity (100%) and sensitivity (93% and 87% for LFIA and RPA, respectively) for samples with high viral load (Ct < 27). False negative results were observed for samples with low viral load (Ct > 28) and/or also containing specific antibodies to ASFV, which decreased antigen availability and were indicative of a chronic, poorly transmissible infection. The simple and rapid sample preparation and the diagnostic performance of the LFIA suggested its large practical applicability for POC diagnosis of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Nanopartículas Metálicas , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/diagnóstico , Ouro , Peróxido de Hidrogênio , Recombinases , Anticorpos Monoclonais
17.
Front Vet Sci ; 10: 1112850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761884

RESUMO

Introduction: African swine fever (ASF) is a contagious viral disease of pigs and wild boar that poses a major threat to the global swine industry. The genotype II African swine fever virus (ASFV) entered the European Union (EU) in 2014 and since then fourteen countries have been affected, Italy and North Macedonia being the last in 2022. While whole genome sequencing remains the gold standard for the identification of new genetic markers, sequencing of multiple loci with significant variations could be used as a rapid and cost-effective alternative to track outbreaks and study disease evolution in endemic areas. Materials and methods: To further our understanding of the epidemiology and spread of ASFV in Europe, 382 isolates collected during 2007 to 2022 were sequenced. The study was initially performed by sequencing the central variable region (CVR), the intergenic region (IGR) between the I73R and I329L genes and the O174L and K145R genes. For further discrimination, two new PCRs were designed to amplify the IGR between the 9R and 10R genes of the multigene family 505 (MGF505) and the IGR between the I329L and I215L genes. The sequences obtained were compared with genotype II isolates from Europe and Asia. Results: The combination of the results obtained by sequencing these variable regions allowed to differentiate the European II-ASFV genotypes into 24 different groups. In addition, the SNP identified in the IGR I329L-I215L region, not previously described, grouped the viruses from North Macedonia that caused the 2022 outbreaks with viruses from Romania, Bulgaria, Serbia and Greece, differentiating from other genotype II isolates present in Europe and Asia. Furthermore, tandem repeat sequence (TRS) within the 9R-10R genes of the multigene family 505 (MGF505) revealed eight different variants circulating. Discussion: These findings describe a new multi-gene approach sequencing method that can be used in routine genotyping to determine the origin of new introductions in ASF-free areas and track infection dynamics in endemic areas.

18.
Vaccines (Basel) ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016092

RESUMO

Three commercially available infectious bovine rhinotracheitis (IBR) live marker vaccines were evaluated for their ability to provide clinical protection to vaccinated calves against wild-type (wt) Bovine alphaherpesvirus-1 (BoHV-1) challenge and their possible effect on wt BoHV-1 latency reactivation following the challenge. On 35 post-vaccination days (PVDs), all animals were challenged with wt BoHV-1. Only the calves in the control group developed severe forms of IBR. The reactivation of latent BoHV-1 was induced by dexamethasone (DMS) treatment on 28 post-challenge days (PCDs). All animals showed IBR clinical signs on three post-DMS treatment days (PDTDs). On PVD 14, all vaccinated animals developed neutralizing antibodies (NAs), whereas in control animals, the NAs appeared post-challenge. The positivity for glycoprotein-B (gB) was detected using real-time polymerase chain reactions in all animals from PCDs 1 to 7. In contrast, the gB-positivity was observed in the immunized calves from PDTDs 3 to 10. Positive expression of gD and gE was observed in nasal swabs of all calves on PDTD 7. These findings suggested that the IBR marker vaccines evaluated in this study protected against wt BoHV-1-induced disease but not against wt BoHV-1-induced latency reactivation, indicating the necessity of developing new products to protect animals from wt BoHV-1-induced latency.

19.
Viruses ; 14(7)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35891365

RESUMO

African Swine Fever (ASF), a hemorrhagic disease with a high mortality rate in suids, is transmitted via direct and indirect contact with infectious animals and contaminated fomites, respectively. ASF reached Europe in 2014, affecting 14 of the 27 EU countries including, recently, the Italian peninsula. The fast and unprecedented spread of ASF in the EU has highlighted gaps in knowledge regarding transmission mechanisms. Fomites, such as contaminated clothing and footwear, farming tools, equipment and vehicles have been widely reported in the spread of ASF. The absence of available vaccines renders biosecurity measures, cleaning and disinfection procedures an essential control tool, to a greater degree than the others, for the prevention of primary and secondary introductions of ASF in pig farms. In this review, available data on the virucidal activity of chemical compounds as disinfectants against the ASF virus (ASFV) are summarized together with laboratory methods adopted to assess the virucidal activity.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Desinfetantes , Animais , Desinfetantes/farmacologia , Europa (Continente) , Fazendas , Sus scrofa , Suínos
20.
Viruses ; 14(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891404

RESUMO

African swine fever (ASF) is a devastating disease, resulting in the high mortality of domestic and wild pigs, spreading quickly around the world. Ensuring the prevention and early detection of the disease is even more crucial given the absence of licensed vaccines. As suggested by the European Commission, those countries which intend to provide evidence of freedom need to speed up passive surveillance of their wild boar populations. If this kind of surveillance is well-regulated in domestic pig farms, the country-specific activities to be put in place for wild populations need to be set based on wild boar density, hunting bags, the environment, and financial resources. Following the indications of the official EFSA opinion 2021, a practical interpretation of the strategy was implemented based on the failure probabilities of wrongly declaring the freedom of an area even if the disease is still present but undetected. This work aimed at providing a valid, applicative example of an exit strategy based on two different approaches: the first uses the wild boar density to estimate the number of carcasses need to complete the exit strategy, while the second estimates it from the number of wild boar hunted and tested. A practical free access tool, named WBC-Counter, was developed to automatically calculate the number of needed carcasses. The practical example was developed using the ASF data from Sardinia (Italian island). Sardinia is ASF endemic from 43 years, but the last ASFV detection dates back to 2019. The island is under consideration for ASF eradication declaration. The subsequent results provide a practical example for other countries in approaching the EFSA exit strategy in the best choices for its on-field application.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Animais , Fazendas , Itália/epidemiologia , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...