Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 29(11): 1690-1700, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34031551

RESUMO

While genetic studies of epilepsies can be performed in thousands of individuals, phenotyping remains a manual, non-scalable task. A particular challenge is capturing the evolution of complex phenotypes with age. Here, we present a novel approach, applying phenotypic similarity analysis to a total of 3251 patient-years of longitudinal electronic medical record data from a previously reported cohort of 658 individuals with genetic epilepsies. After mapping clinical data to the Human Phenotype Ontology, we determined the phenotypic similarity of individuals sharing each genetic etiology within each 3-month age interval from birth up to a maximum age of 25 years. 140 of 600 (23%) of all 27 genes and 3-month age intervals with sufficient data for calculation of phenotypic similarity were significantly higher than expect by chance. 11 of 27 genetic etiologies had significant overall phenotypic similarity trajectories. These do not simply reflect strong statistical associations with single phenotypic features but appear to emerge from complex clinical constellations of features that may not be strongly associated individually. As an attempt to reconstruct the cognitive framework of syndrome recognition in clinical practice, longitudinal phenotypic similarity analysis extends the traditional phenotyping approach by utilizing data from electronic medical records at a scale that is far beyond the capabilities of manual phenotyping. Delineation of how the phenotypic homogeneity of genetic epilepsies varies with age could improve the phenotypic classification of these disorders, the accuracy of prognostic counseling, and by providing historical control data, the design and interpretation of precision clinical trials in rare diseases.


Assuntos
Heterogeneidade Genética , Testes Genéticos/estatística & dados numéricos , Fenótipo , Espasmos Infantis/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Locos de Características Quantitativas , Espasmos Infantis/diagnóstico
2.
Genet Med ; 22(11): 1921-1922, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32887940

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Genet Med ; 22(12): 2060-2070, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32773773

RESUMO

PURPOSE: Childhood epilepsies have a strong genetic contribution, but the disease trajectory for many genetic etiologies remains unknown. Electronic medical record (EMR) data potentially allow for the analysis of longitudinal clinical information but this has not yet been explored. METHODS: We analyzed provider-entered neurological diagnoses made at 62,104 patient encounters from 658 individuals with known or presumed genetic epilepsies. To harmonize clinical terminology, we mapped clinical descriptors to Human Phenotype Ontology (HPO) terms and inferred higher-level phenotypic concepts. We then binned the resulting 286,085 HPO terms to 100 3-month time intervals and assessed gene-phenotype associations at each interval. RESULTS: We analyzed a median follow-up of 6.9 years per patient and a cumulative 3251 patient years. Correcting for multiple testing, we identified significant associations between "Status epilepticus" with SCN1A at 1.0 years, "Severe intellectual disability" with PURA at 9.75 years, and "Infantile spasms" and "Epileptic spasms" with STXBP1 at 0.5 years. The identified associations reflect known clinical features of these conditions, and manual chart review excluded provider bias. CONCLUSION: Some aspects of the longitudinal disease histories can be reconstructed through EMR data and reveal significant gene-phenotype associations, even within closely related conditions. Gene-specific EMR footprints may enable outcome studies and clinical decision support.


Assuntos
Epilepsia , Deficiência Intelectual , Espasmos Infantis , Criança , Registros Eletrônicos de Saúde , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Fenótipo
4.
BMC Genomics ; 17 Suppl 4: 434, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535360

RESUMO

BACKGROUND: High throughput molecular sequencing and increased biospecimen variety have introduced significant informatics challenges for research biorepository infrastructures. We applied a modular system integration approach to develop an operational biorepository management system. This method enables aggregation of the clinical, specimen and genomic data collected for biorepository resources. METHODS: We introduce an electronic Honest Broker (eHB) and Biorepository Portal (BRP) open source project that, in tandem, allow for data integration while protecting patient privacy. This modular approach allows data and specimens to be associated with a biorepository subject at any time point asynchronously. This lowers the bar to develop new research projects based on scientific merit without institutional review for a proposal. RESULTS: By facilitating the automated de-identification of specimen and associated clinical and genomic data we create a future proofed specimen set that can withstand new workflows and be connected to new associated information over time. Thus facilitating collaborative advanced genomic and tissue research. CONCLUSIONS: As of Janurary of 2016 there are 23 unique protocols/patient cohorts being managed in the Biorepository Portal (BRP). There are over 4000 unique subject records in the electronic honest broker (eHB), over 30,000 specimens accessioned and 8 institutions participating in various biobanking activities using this tool kit. We specifically set out to build rich annotation of biospecimens with longitudinal clinical data; BRP/REDCap integration for multi-institutional repositories; EMR integration; further annotated specimens with genomic data specific to a domain; build application hooks for experiments at the specimen level integrated with analytic software; while protecting privacy per the Office of Civil Rights (OCR) and HIPAA.


Assuntos
Bancos de Espécimes Biológicos , Software , Manejo de Espécimes/métodos , Pesquisa Translacional Biomédica , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...