Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34529751

RESUMO

Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.


Assuntos
Antibacterianos/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , NF-kappa B/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia
2.
Mucosal Immunol ; 14(3): 615-629, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731826

RESUMO

The gut epithelium is a critical protective barrier. Its NAIP/NLRC4 inflammasome senses infection by Gram-negative bacteria, including Salmonella Typhimurium (S.Tm) and promotes expulsion of infected enterocytes. During the first ~12-24 h, this reduces mucosal S.Tm loads at the price of moderate enteropathy. It remained unknown how this NAIP/NLRC4-dependent tradeoff would develop during subsequent infection stages. In NAIP/NLRC4-deficient mice, S.Tm elicited severe enteropathy within 72 h, characterized by elevated mucosal TNF (>20 pg/mg) production from bone marrow-derived cells, reduced regeneration, excessive enterocyte loss, and a collapse of the epithelial barrier. TNF-depleting antibodies prevented this destructive pathology. In hosts proficient for epithelial NAIP/NLRC4, a heterogeneous enterocyte death response with both apoptotic and pyroptotic features kept S.Tm loads persistently in check, thereby preventing this dire outcome altogether. Our results demonstrate that immediate and selective removal of infected enterocytes, by locally acting epithelium-autonomous NAIP/NLRC4, is required to avoid a TNF-driven inflammatory hyper-reaction that otherwise destroys the epithelial barrier.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Enterócitos/imunologia , Inflamação/imunologia , Mucosa Intestinal/patologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Infecções por Salmonella/imunologia , Salmonella typhimurium/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Citotoxicidade Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Inibidora de Apoptose Neuronal/genética , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nature ; 544(7651): 498-502, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28405025

RESUMO

Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.


Assuntos
Afinidade de Anticorpos , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/imunologia , Animais , Aderência Bacteriana , Vacinas Bacterianas , Ceco/imunologia , Ceco/microbiologia , Contagem de Colônia Microbiana , Conjugação Genética , Feminino , Humanos , Masculino , Camundongos , Plasmídeos/genética , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade
4.
Nat Microbiol ; 2: 16268, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112722

RESUMO

Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 µm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.


Assuntos
Peróxido de Hidrogênio/metabolismo , Neutrófilos/enzimologia , Peroxidase/metabolismo , Fagossomos/microbiologia , Explosão Respiratória , Salmonella/metabolismo , Animais , Simulação por Computador , Humanos , Ácido Hipocloroso/metabolismo , Cinética , Camundongos , Neutrófilos/imunologia , Oxirredução , Estresse Oxidativo , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salmonella/patogenicidade
5.
Cell Host Microbe ; 20(2): 238-49, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27453483

RESUMO

Salmonella Typhimurium (S.Tm) causes acute enteropathy resolving after 4-7 days. Strikingly, antibiotic therapy does not accelerate disease resolution. We screened for factors blocking remission using a S.Tm enterocolitis model. The antibiotic ciprofloxacin clears pathogen stool loads within 3-24 hr, while gut pathology resolves more slowly (ψ50: ∼48 hr, remission: 6-9 days). This delayed resolution is mediated by an interferon-γ (IFN-γ)-dependent response that is triggered during acute infection and continues throughout therapy. Specifically, IFN-γ production by mucosal T and NK cells retards disease resolution by maintaining signaling through the transcriptional regulator STAT1 and boosting expression of inflammatory mediators like IL-1ß, TNF, and iNOS. Additionally, sustained IFN-γ fosters phagocyte accumulation and hampers antimicrobial defense mediated by IL-22 and the lectin REGIIIß. These findings reveal a role for IFN-γ in delaying resolution of intestinal inflammation and may inform therapies for acute Salmonella enteropathy, chronic inflammatory bowel diseases, or disease resolution during antibiotic treatment.


Assuntos
Antibacterianos/administração & dosagem , Enterocolite/patologia , Trato Gastrointestinal/patologia , Interferon gama/metabolismo , Infecções por Salmonella/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Enterocolite/tratamento farmacológico , Enterocolite/imunologia , Enterocolite/microbiologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Fatores Imunológicos/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL , Fagócitos/imunologia , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Transdução de Sinais , Linfócitos T/imunologia
6.
PLoS Pathog ; 12(6): e1005723, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27341123

RESUMO

Salmonella Typhimurium (S.Tm) is a common cause of self-limiting diarrhea. The mucosal inflammation is thought to arise from a standoff between the pathogen's virulence factors and the host's mucosal innate immune defenses, particularly the mucosal NAIP/NLRC4 inflammasome. However, it had remained unclear how this switches the gut from homeostasis to inflammation. This was studied using the streptomycin mouse model. S.Tm infections in knockout mice, cytokine inhibition and -injection experiments revealed that caspase-1 (not -11) dependent IL-18 is pivotal for inducing acute inflammation. IL-18 boosted NK cell chemoattractants and enhanced the NK cells' migratory capacity, thus promoting mucosal accumulation of mature, activated NK cells. NK cell depletion and Prf-/- ablation (but not granulocyte-depletion or T-cell deficiency) delayed tissue inflammation. Our data suggest an NK cell perforin response as one limiting factor in mounting gut mucosal inflammation. Thus, IL-18-elicited NK cell perforin responses seem to be critical for coordinating mucosal inflammation during early infection, when S.Tm strongly relies on virulence factors detectable by the inflammasome. This may have broad relevance for mucosal defense against microbial pathogens.


Assuntos
Interleucina-18/biossíntese , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções por Salmonella/imunologia , Animais , Caspase 1 , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunidade Inata/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Interleucina-18/imunologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase , Salmonella typhimurium/imunologia
7.
Cell Microbiol ; 17(12): 1833-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26104016

RESUMO

In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that hypoxia-induced impairment of antimicrobial activity and Salmonella virulence cooperate to allow for enhanced Salmonella replication in MΦ.


Assuntos
Interações Hospedeiro-Patógeno , Mucosa Intestinal/química , Macrófagos/imunologia , Macrófagos/microbiologia , Oxigênio/análise , Salmonella/imunologia , Salmonella/fisiologia , Anaerobiose , Animais , Modelos Animais de Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Salmonella/crescimento & desenvolvimento , Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Virulência
8.
Cell Host Microbe ; 16(2): 237-248, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25121751

RESUMO

The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/ß and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Enterócitos/microbiologia , Proteína Inibidora de Apoptose Neuronal/fisiologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Ceco/microbiologia , Ceco/patologia , Enterócitos/imunologia , Interações Hospedeiro-Patógeno , Inflamassomos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
PLoS One ; 8(10): e77204, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143212

RESUMO

Infections, microbe sampling and occasional leakage of commensal microbiota and their products across the intestinal epithelial cell layer represent a permanent challenge to the intestinal immune system. The production of reactive oxygen species by NADPH oxidase is thought to be a key element of defense. Patients suffering from chronic granulomatous disease are deficient in one of the subunits of NADPH oxidase. They display a high incidence of Crohn's disease-like intestinal inflammation and are hyper-susceptible to infection with fungi and bacteria, including a 10-fold increased risk of Salmonellosis. It is not completely understood which steps of the infection process are affected by the NADPH oxidase deficiency. We employed a mouse model for Salmonella diarrhea to study how NADPH oxidase deficiency (Cybb (-/-)) affects microbe handling by the large intestinal mucosa. In this animal model, wild type S. Typhimurium causes pronounced enteropathy in wild type mice. In contrast, an avirulent S. Typhimurium mutant (S.Tm(avir); invGsseD), which lacks virulence factors boosting trans-epithelial penetration and growth in the lamina propria, cannot cause enteropathy in wild type mice. We found that Cybb (-/-) mice are efficiently infected by S.Tm(avir) and develop enteropathy by day 4 post infection. Cell depletion experiments and infections in Cybb (-/-) Myd88 (-/-) mice indicated that the S.Tm(avir)-inflicted disease in Cybb (-/-) mice hinges on CD11c(+)CX3CR1(+) monocytic phagocytes mediating colonization of the cecal lamina propria and on Myd88-dependent proinflammatory immune responses. Interestingly, in mixed bone marrow chimeras a partial reconstitution of Cybb-proficiency in the bone marrow derived compartment was sufficient to ameliorate disease severity. Our data indicate that NADPH oxidase expression is of key importance for restricting the growth of S.Tm(avir) in the mucosal lamina propria. This provides important insights into microbe handling by the large intestinal mucosa and the role of NADPH oxidase in maintaining microbe-host mutualism at this exposed body surface.


Assuntos
Bacteriemia/microbiologia , Sistemas de Secreção Bacterianos , Colite/microbiologia , NADPH Oxidases/deficiência , Salmonelose Animal/complicações , Salmonella typhimurium/fisiologia , Animais , Bacteriemia/enzimologia , Bacteriemia/imunologia , Antígenos CD11/metabolismo , Colite/enzimologia , Colite/imunologia , Regulação Enzimológica da Expressão Gênica , Mucosa Intestinal/microbiologia , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Mutação , Fator 88 de Diferenciação Mieloide/metabolismo , NADPH Oxidases/metabolismo , Salmonella typhimurium/genética
10.
Ann Indian Acad Neurol ; 13(Suppl 2): S89-93, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21369424

RESUMO

Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-ß (Aß) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aß peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing ß- and γ-secretases. All these proteins involved in the production of Aß peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...