Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 2(12): 100367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36590694

RESUMO

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).


Assuntos
Neurônios Espinhosos Médios , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Neurogênese , Corpo Estriado , Células-Tronco Pluripotentes/metabolismo
2.
Science ; 372(6542)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958447

RESUMO

Deciphering how the human striatum develops is necessary for understanding the diseases that affect this region. To decode the transcriptional modules that regulate this structure during development, we compiled a catalog of 1116 long intergenic noncoding RNAs (lincRNAs) identified de novo and then profiled 96,789 single cells from the early human fetal striatum. We found that D1 and D2 medium spiny neurons (D1- and D2-MSNs) arise from a common progenitor and that lineage commitment is established during the postmitotic transition, across a pre-MSN phase that exhibits a continuous spectrum of fate determinants. We then uncovered cell type-specific gene regulatory networks that we validated through in silico perturbation. Finally, we identified human-specific lincRNAs that contribute to the phylogenetic divergence of this structure in humans. This work delineates the cellular hierarchies governing MSN lineage commitment.


Assuntos
Atlas como Assunto , Corpo Estriado/citologia , Corpo Estriado/embriologia , Neurogênese/genética , RNA Longo não Codificante/genética , Análise de Célula Única , Fatores de Transcrição/genética , Feto , Neurônios GABAérgicos/metabolismo , Humanos , RNA-Seq , Transcrição Gênica
3.
PLoS Pathog ; 13(1): e1006145, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060952

RESUMO

The host factor and interferon (IFN)-stimulated gene (ISG) product, zinc-finger antiviral protein (ZAP), inhibits a number of diverse viruses by usurping and intersecting with multiple cellular pathways. To elucidate its antiviral mechanism, we perform a loss-of-function genome-wide RNAi screen to identify cellular cofactors required for ZAP antiviral activity against the prototype alphavirus, Sindbis virus (SINV). In order to exclude off-target effects, we carry out stringent confirmatory assays to verify the top hits. Important ZAP-liaising partners identified include proteins involved in membrane ion permeability, type I IFN signaling, and post-translational protein modification. The factor contributing most to the antiviral function of ZAP is TRIM25, an E3 ubiquitin and ISG15 ligase. We demonstrate here that TRIM25 interacts with ZAP through the SPRY domain, and TRIM25 mutants lacking the RING or coiled coil domain fail to stimulate ZAP's antiviral activity, suggesting that both TRIM25 ligase activity and its ability to form oligomers are critical for its cofactor function. TRIM25 increases the modification of both the short and long ZAP isoforms by K48- and K63-linked polyubiquitin, although ubiquitination of ZAP does not directly affect its antiviral activity. However, TRIM25 is critical for ZAP's ability to inhibit translation of the incoming SINV genome. Taken together, these data uncover TRIM25 as a bona fide ZAP cofactor that leads to increased ZAP modification enhancing its translational inhibition activity.


Assuntos
Infecções por Alphavirus/prevenção & controle , Antivirais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sindbis virus/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Cricetinae , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
Proc Natl Acad Sci U S A ; 113(14): E2011-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001857

RESUMO

Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3's cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1's conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2-E3 interface through small-molecule modulators.


Assuntos
Ligases/antagonistas & inibidores , Suramina/farmacologia , Relação Estrutura-Atividade
5.
Artigo em Inglês | MEDLINE | ID: mdl-26858688

RESUMO

BACKGROUND: To identify novel small molecules against the TSH receptor, we developed a sensitive transcription-based luciferase high-throughput screening (HTS) system named the TSHR-Glo Assay (TSHR-Glo). METHODS: This assay uses double-transfected Chinese hamster ovary cells stably expressing the human TSHR and a cAMP-response element (CRE) construct fused to an improved luciferase reporter gene. RESULTS: The assay was highly responsive toward TSH in a dose-dependent manner with a TSH sensitivity of 10(-10)M (10 ± 1.12 µU/ml) and thyroid-stimulating antibodies, a hallmark of Graves' disease, could also be detected. The assay was validated against the standard indicator of HTS performance - the Z-factor (Z') - producing a score of 0.895. Using the TSHR-Glo assay, we screened 48,224 compounds from a diverse chemical library in duplicate plates at a fixed dose of 17 µM. Twenty molecules with the greatest activity out of 62 molecules that were identified by this technique were subsequently screened against the parent luciferase stable cell line in order to eliminate false positive stimulators. CONCLUSION: Using this approach, we were able to identify specific agonists against the TSH receptor leading to the characterization of several TSH agonist molecules. Hence, the TSHR-Glo assay was a one-step cell-based HTS assay, which was successful in the discovery of novel small molecular agonists and for the detection of stimulating antibodies to the TSH receptor.

6.
Virology ; 490: 6-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26803470

RESUMO

Enveloped virus entry occurs when viral and cellular membranes fuse releasing particle contents into the target cell. Human immunodeficiency virus (HIV) entry occurs by cell-free virus or virus transferred between infected and uninfected cells through structures called virological synapses. We developed a high-throughput cell-based assay to identify small molecule inhibitors of cell-free or virological synapse-mediated entry. An HIV clone carrying Cre recombinase as a Gag-internal gene fusion releases active Cre into cells upon viral entry activating a recombinatorial gene switch changing dsRed to GFP-expression. A screen of a 1998 known-biological profile small molecule library identified pharmacological HIV entry inhibitors that block both cell-free and cell-to-cell infection. Many top hits were noted as HIV inhibitors in prior studies, but not previously recognized as entry antagonists. Modest therapeutic indices for simvastatin and nigericin were observed in confirmatory HIV infection assays. This robust assay is adaptable to study HIV and heterologous viral pseudotypes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Virologia/métodos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , HIV-1/fisiologia , Humanos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
BMC Bioinformatics ; 16: 225, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26198214

RESUMO

BACKGROUND: Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout (e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare the average effect on each population, precluding identification of outliers that affect the distribution of the reporter in the population but not its average. Other approaches only measure changes to the distribution with a single parameter, precluding accurate distinction and clustering of interesting outlier distributions. RESULTS: We describe a methodology to identify outlier conditions by considering the cell-level measurements from each condition as a sample of an underlying distribution. With appropriate selection of a distance metric, all effects can be embedded in a fixed-dimensionality Euclidean basis, facilitating identification and clustering of biologically interesting outliers. We demonstrate that measurement of distances with the Hellinger distance metric offers substantial computational efficiencies over alternative metrics. We validate this methodology using an RNA interference (RNAi) screen in mouse embryonic stem cells (ESC) with a Nanog reporter. The methodology clusters effects of multiple control siRNAs into their true identities better than conventional approaches describing the median cell fluorescence or the commonly used Kolmogorov-Smirnov distance between the observed fluorescence distribution and the null distribution. It identifies outlier genes with effects on the reporter distribution that would have been missed by other methods. Among them, siRNA targeting Chek1 leads to a wider Nanog reporter fluorescence distribution. Similarly, siRNA targeting Med14 or Med27 leads to a narrower Nanog reporter fluorescence distribution. We confirm the roles of these three genes in regulating pluripotency by mRNA expression and alkaline phosphatase staining using independent short hairpin (sh) RNAs. CONCLUSIONS: Using our methodology, we describe each experimental condition by a probability distribution. Measuring distances between probability distributions permits a multivariate rather than univariate readout. Clustering points derived from these distances allows us to obtain greater biological insight than methods based solely on single parameters. We find several outliers from a mouse ESC RNAi screen that we confirm to be pluripotency regulators. Many of these outliers would have been missed by other analysis methods.


Assuntos
Biologia Computacional/métodos , Proteínas de Homeodomínio/genética , Interferência de RNA , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Análise por Conglomerados , Genes Reporter , Genoma , Complexo Mediador/antagonistas & inibidores , Complexo Mediador/genética , Complexo Mediador/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Homeobox Nanog , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Tretinoína/farmacologia
8.
Nat Med ; 21(4): 383-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751815

RESUMO

Types 1 and 2 diabetes affect some 380 million people worldwide. Both ultimately result from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with a peak percentage (∼2%) engaged in the cell cycle in the first year of life. In embryonic life and after early childhood, beta cell replication is barely detectable. Whereas beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts. Hence, there remains an urgent need for antidiabetic therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, using a high-throughput small-molecule screen (HTS), we find that analogs of the small molecule harmine function as a new class of human beta cell mitogenic compounds. We also define dual-specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine and the nuclear factors of activated T cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation and differentiation. Using three different mouse and human islet in vivo-based models, we show that harmine is able to induce beta cell proliferation, increase islet mass and improve glycemic control. These observations suggest that harmine analogs may have unique therapeutic promise for human diabetes therapy. Enhancing the potency and beta cell specificity of these compounds are important future challenges.


Assuntos
Harmina/química , Células Secretoras de Insulina/citologia , Fatores de Transcrição NFATC/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Adolescente , Adulto , Idoso , Animais , Calcineurina/química , Diferenciação Celular , Proliferação de Células , Feminino , Células HCT116 , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibidores da Monoaminoxidase/química , Ratos , Ratos Wistar , Fatores de Tempo , Adulto Jovem , Quinases Dyrk
9.
Antiviral Res ; 113: 49-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446405

RESUMO

Human cytomegalovirus (CMV) is a latent and persistent virus whose proliferation increases morbidity and mortality of immune-compromised individuals. The current anti-CMV therapeutics targeting the viral DNA polymerase or the major immediate-early (MIE) gene locus are somewhat effective at limiting CMV-associated disease. However, due to low bioavailability, severe toxicity, and the development of drug resistant CMV strains following prolonged treatment, current anti-CMV therapeutics are insufficient. To help address this shortfall, we established a high-content assay to identify inhibitors targeting CMV entry and the early steps of infection. The infection of primary human fibroblasts with a variant of the CMV laboratory strain AD169 expressing a chimeric IE2-yellow fluorescence protein (YFP) (AD169IE2-YFP) provided the basis for the high-content assay. The localization of IE2-YFP to the nucleus shortly following an AD169IE2-YFP infection induced a robust fluorescent signal that was quantified using confocal microscopy. The assay was optimized to achieve outstanding assay fitness and high Z' scores. We then screened a bioactive chemical library consisting of 2080 compounds and identified hit compounds based on the decrease of fluorescence signal from IE2-YFP nuclear expression. The hit compounds likely target various cellular processes involved in the early steps of infection including capsid transport, chromatin remodeling, and viral gene expression. Extensive secondary assays confirmed the ability of a hit compound, convallatoxin, to inhibit infection of both laboratory and clinical CMV strains and limit virus proliferation. Collectively, the data demonstrate that we have established a robust high-content screen to identify compounds that limit the early steps of the CMV life cycle, and that novel inhibitors of early infection events may serve as viable CMV therapeutics.


Assuntos
Citomegalovirus/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Testes de Sensibilidade Microbiana/métodos , Bibliotecas de Moléculas Pequenas/química , Estrofantinas/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/metabolismo , Transativadores/metabolismo
10.
Thyroid ; 25(1): 51-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25333622

RESUMO

BACKGROUND: Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. METHODS: To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. RESULTS: We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor-expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10(-8) M, and molecule MS438 had an EC50 of 5.3×10(-8) M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gßγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gßγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. CONCLUSIONS: Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists.


Assuntos
Receptores da Tireotropina/agonistas , Doenças da Glândula Tireoide/tratamento farmacológico , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos
11.
Mol Cell ; 56(1): 140-52, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25240402

RESUMO

Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.


Assuntos
Proteínas de Homeodomínio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Proteína Homeobox Nanog , Regiões Promotoras Genéticas , Interferência de RNA , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Toxins (Basel) ; 6(1): 33-53, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24366208

RESUMO

Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB) followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA) is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTA(E177Q)egfp) to identify compounds that target RTA retrograde translocation. Stabilizing RTA(E177Q)egfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds) with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.


Assuntos
Ricina/antagonistas & inibidores , Ricina/química , Bibliotecas de Moléculas Pequenas/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ricinus/química , Toxinas Biológicas/antagonistas & inibidores , Toxinas Biológicas/química
13.
J Neurosci Res ; 86(12): 2602-14, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18478542

RESUMO

An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Tirosina/metabolismo , Células 3T3 , Animais , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/fisiologia , Espaço Extracelular/fisiologia , Humanos , Camundongos , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neuritos/fisiologia , Fosforilação/fisiologia , Ratos , Transdução de Sinais/fisiologia
14.
Channels (Austin) ; 1(2): 113-23, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18690019

RESUMO

A large number of ion channels maintain their activity through direct interactions with phosphatidylinositol bisphosphate (PIP2). For such channels, hydrolysis of PIP2 causes current inhibition. It has become controversial whether the inhibitory effects on channel activity represent direct effects of PIP2 hydrolysis or of downstream PKC action. We studied Phospholipase C (PLC)-dependent inhibition of G protein-activated inwardly rectifying K+ (Kir3) channels. By monitoring simultaneously channel activity and PIP2 hydrolysis, we determined that both direct PIP2 depletion and PKC actions contribute to Kir3 current inhibition. We show that the PKC-induced effects strongly depend on PIP2 levels in the membrane. At the same time, we show that PKC destabilizes Kir3/PIP2 interactions and enhances the effects of PIP2 depletion on channel activity. These results demonstrate that PIP2 depletion and PKC-mediated effects reinforce each other and suggest that both of these interdependent mechanisms contribute to Kir3 current inhibition. This mechanistic insight may explain how even minor changes in PIP2 levels can have profound effects on Kir3 activity. We also show that stabilization of Kir3/PIP2 interactions by Gbetagamma attenuates both PKC and Gq-mediated current inhibition, suggesting that diverse pathways regulate Kir3 activity through modulation of channel interactions with PIP2.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Linhagem Celular , DNA Complementar/genética , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrólise , Rim/citologia , Fosfolipase C gama/farmacologia , Proteína Quinase C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
15.
Mol Biol Cell ; 17(6): 2696-706, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16597699

RESUMO

The growth of neuronal processes depends critically on the function of adhesion proteins that link extracellular ligands to the cytoskeleton. The neuronal adhesion protein L1-CAM serves as a receptor for nerve growth-promoting proteins, a process that is inhibited by the interaction between L1-CAM and the cytoskeleton adaptor ankyrin. Using a novel reporter based on intramolecular bioluminescence resonance energy transfer, we have determined that the MAP kinase pathway regulates the phosphorylation of the FIGQY motif in the adhesion protein L1-CAM and its interaction with ankyrin B. MAP kinase pathway inhibitors block L1-CAM-mediated neuronal growth. However, this blockade is partially rescued by inhibitors of L1-CAM-ankyrin binding. These results demonstrate that the MAP kinase pathway regulates L1-CAM-mediated nerve growth by modulating ankyrin binding, suggesting that nerve growth can be regulated at the level of individual receptors.


Assuntos
Anquirinas/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/fisiologia , Anquirinas/antagonistas & inibidores , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Neuroblastoma , Fosforilação
16.
J Biol Chem ; 281(3): 1827-39, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16293615

RESUMO

Calcium channels are well known targets for inhibition by G protein-coupled receptors, and multiple forms of inhibition have been described. Here we report a novel mechanism for G protein-mediated modulation of neuronal voltage-dependent calcium channels that involves the destabilization and subsequent removal of calcium channels from the plasma membrane. Imaging experiments in living sensory neurons show that, within seconds of receptor activation, calcium channels are cleared from the membrane and sequestered in clathrin-coated vesicles. Disruption of the L1-CAM-ankyrin B complex with the calcium channel mimics transmitter-induced trafficking of the channels, reduces calcium influx, and decreases exocytosis. Our results suggest that G protein-induced removal of plasma membrane calcium channels is a consequence of disrupting channel-cytoskeleton interactions and might represent a novel mechanism of presynaptic inhibition.


Assuntos
Canais de Cálcio/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Neurônios Aferentes/fisiologia , Animais , Canais de Cálcio/efeitos dos fármacos , Embrião de Galinha , Eletrofisiologia , Gânglios Espinais/fisiologia , Fragmentos de Peptídeos , ômega-Conotoxina GVIA/farmacologia
17.
Sci STKE ; 2005(313): tr27, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16333020

RESUMO

This Teaching Resource provides a summary and slides derived from a lecture on the integrin family members and the downstream signaling pathways they activate; it is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture focuses on the capacity of integrins to serve as mechanotransducers, with particular emphasis on signaling mechanisms downstream of integrins.


Assuntos
Recursos Audiovisuais , Biologia/educação , Citoesqueleto/fisiologia , Integrinas/fisiologia , Complexos Multiproteicos/fisiologia , Transdução de Sinais/fisiologia , Estresse Mecânico , Animais , Educação de Pós-Graduação , Humanos , Estimulação Física , Transdutores
18.
J Cell Biol ; 162(4): 719-30, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12925712

RESUMO

The function of adhesion receptors in both cell adhesion and migration depends critically on interactions with the cytoskeleton. During cell adhesion, cytoskeletal interactions stabilize receptors to strengthen adhesive contacts. In contrast, during cell migration, adhesion proteins are believed to interact with dynamic components of the cytoskeleton, permitting the transmission of traction forces through the receptor to the extracellular environment. The L1 cell adhesion molecule (L1CAM), a member of the Ig superfamily, plays a crucial role in both the migration of neuronal growth cones and the static adhesion between neighboring axons. To understand the basis of L1CAM function in adhesion and migration, we quantified directly the diffusion characteristics of L1CAM on the upper surface of ND-7 neuroblastoma hybrid cells as an indication of receptor-cytoskeleton interactions. We find that cell surface L1CAM engages in diffusion, retrograde movement, and stationary behavior, consistent with interactions between L1CAM and two populations of cytoskeleton proteins. We provide evidence that the cytoskeletal adaptor protein ankyrin mediates stationary behavior while inhibiting the actin-dependent retrograde movement of L1CAM. Moreover, inhibitors of L1CAM-ankyrin interactions promote L1CAM-mediated axon growth. Together, these results suggest that ankyrin binding plays a crucial role in the anti-coordinate regulation of L1CAM-mediated adhesion and migration.


Assuntos
Anquirinas/metabolismo , Citoesqueleto/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Actinas/metabolismo , Animais , Mutação , Molécula L1 de Adesão de Célula Nervosa/genética , Neuritos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...