Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ambio ; 53(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37592197

RESUMO

Climate change adaptation and mitigation strategies (CCAMS) are changes to the management of production forests motivated by the need to mitigate climate change, or adapt production forests to climate change risks. Sweden is employing CCAMS with unclear implications for biodiversity and forest ecosystem services (ES). Here, we synthesized evidence from 51 published scientific reviews, to evaluate the potential implications for biodiversity and a range of provisioning, regulating, and cultural ES, from the adoption of CCAMS relative to standard forestry practice. The CCAMS assessed were the adoption of (i) mixed-species stands, (ii) continuous cover forestry, (iii) altered rotation lengths, (iv) conversion to introduced tree species, (v) logging residue extraction, (vi) stand fertilization, and (vii) altered ditching/draining practices. We highlight the complexity of biodiversity and ES outcomes, identify knowledge gaps, and emphasize the importance of evidence-based decision making and landscape-scale planning when navigating choices involving the widespread adoption of CCAMS.


Assuntos
Mudança Climática , Ecossistema , Conservação dos Recursos Naturais , Florestas , Biodiversidade , Árvores , Europa (Continente) , Agricultura Florestal , Espécies Introduzidas
3.
PLoS One ; 18(12): e0289835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100411

RESUMO

The rotation lengths of intensively managed production forests may be altered to achieve a variety of goals, with correspondingly implications for biodiversity. Here we consider the potential implications of shortened rotation times for biodiversity in planted monocultures of the two most common production tree species in Sweden, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). To do so we surveyed bird, bryophyte, epiphytic lichen and vascular plant diversity in 80 and 55-year-old stands; stand ages which approximate present-day and potential future rotation lengths in this region respectively. We found clear differences in the species communities of the 55 compared to the 80-year-old stands for both understory species and epiphytes, but not for birds. Nevertheless, bird species richness was still highest in the 80-year-old Norway spruce dominated stands. Dead wood amount was also highest the 80-year-old Norway spruce stands. Highest species richness of epiphytic lichens was found in 80-year-old Scots pine stands. However, 55-year-old Scots pine stands had a higher understory species richness and diversity than the older Scots pine stands, including a larger number of open land species. The 80-year-old forest stands examined may be considered old with respect to production forest rotation lengths in Sweden but are relatively young when comparing stand ages of unmanaged natural forest stands. Nevertheless, our results indicate that shortening the rotation time of Scots pine and Norway spruce, in this part of Sweden from 80 to 55 years, could have important consequences for forest biodiversity. These consequences are primarily inferred from the likely implications from shortened rotations for lichens community composition and diversity in both Norway spruce and Scots pine stands, as well as impacts on understory plant species in Norway spruce stands.


Assuntos
Briófitas , Líquens , Picea , Pinus sylvestris , Traqueófitas , Animais , Suécia , Florestas , Biodiversidade , Árvores , Aves , Ecossistema
4.
Environ Sci Technol ; 57(5): 2149-2161, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36706339

RESUMO

Forests are home to many species and provide biomass for material and energy. Here, we modeled the potential global species extinction risk from future scenarios of climate mitigation and EU28 forest management. We considered the continuation of current practices, the adoption of closer-to-nature management (low-intensity practices), and set-asides (conversion to unharvested forestland) on portions of EU28 forestland under two climate mitigation pathways as well as the consequences for the wood trade. Expanding set-aside to more than 25% of EU28 currently managed forestland by 2100 increased the global extinction risk compared to the continuation of current practices. This outcome stems from a projected increase in EU forest biomass imports, partially from biodiversity-vulnerable regions to compensate for a decrease in domestic harvest. Conversely, closer-to-nature management on up to 37.5% of EU28 forestland lowered extinction risks. Increasing the internal production and partially sourcing imported biomass from low-intensity managed areas lowered the species extinction footprint even further. However, low-intensity practices could not entirely compensate for the increased extinction risk under a high climate mitigation scenario with greater demand for lignocellulosic crops and energywood. When developing climate mitigation strategies, it is crucial to assess forest biomass supply chains for the early detection of extinction risks in non-EU regions and for developing strategies to prevent increase of global impacts.


Assuntos
Mudança Climática , Florestas , Biomassa , Madeira , Biodiversidade
5.
Ambio ; 52(1): 68-80, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997987

RESUMO

Climate change is challenging conservation strategies for protected areas. To summarise current guidance, we systematically compiled recommendations from reviews of scientific literature (74 reviews fitting inclusion criteria) about how to adapt conservation strategies in the face of climate change. We focussed on strategies for designation and management of protected areas in terrestrial landscapes, in boreal and temperate regions. Most recommendations belonged to one of five dominating categories: (i) Ensure sufficient connectivity; (ii) Protect climate refugia; (iii) Protect a few large rather than many small areas; (iv) Protect areas predicted to become important for biodiversity in the future; and (v) Complement permanently protected areas with temporary protection. The uncertainties and risks caused by climate change imply that additional conservation efforts are necessary to reach conservation goals. To protect biodiversity in the future, traditional biodiversity conservation strategies should be combined with strategies purposely developed in response to a warming climate.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Refúgio de Vida Selvagem
6.
J Environ Manage ; 313: 114993, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413650

RESUMO

In Sweden, the majority of forest area has been altered by industrial forestry over the decades. Almost 30 years ago, a shift towards biodiversity-oriented forest management practices occurred. Here we took advantage of long-term data collected by the Swedish National Forest Inventory to track developmental changes in forest structural components over this time. We assessed changes in structural components that play an important role in biodiversity (dead wood, large living trees, tree species composition, and understory vegetation) in four forest types with descending tiers of biodiversity protection: protected areas, woodland key habitats, low-productivity forests and production forests. Overall, we found a positive trend in the volumes of dead wood and large living trees, as well as in tree species diversity, while there was a general decline in understory vegetation coverage. Most observed changes were consistent with the intended outcomes of the current forest policy, adapted in the early 1990s. The implementation of retention forestry is likely driving some of the observed changes in forest structural components in the south. In contrast, we observed no changes in any of the focal structural components in the north, which could be attributed to the ongoing clear-cutting of forests previously managed less intensively. Dead wood and large living trees increased not only in managed, but also in unmanaged forests, likely reflecting historical management. The increased tree species diversity can be explained through current forest management practices that encourages maintenance of additional tree species. Decreasing understory vegetation coverage in both dense managed and unmanaged forests suggests that factors other than forestry contribute to the ongoing changes in understory vegetation in Swedish forests. Overall, the observed increase in structural components has not yet been reflected in documented improvements for red-listed forest species, which may be due to delays in species responses to small improvements, as well as a lack of detailed monitoring. Similarly, the increased availability of forest structural components might still be insufficient to meet the specific habitat requirements of red-listed species.


Assuntos
Árvores , Madeira , Biodiversidade , Agricultura Florestal , Florestas , Políticas , Suécia
7.
Ecol Evol ; 11(16): 11223-11240, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429914

RESUMO

At northern latitudes, large spatial and temporal variation in the nutritional composition of available foods poses challenges to wild herbivores trying to satisfy their nutrient requirements. Studies conducted in mostly captive settings have shown that animals from a variety of taxonomic groups deal with this challenge by adjusting the amounts and proportions of available food combinations to achieve a target nutrient balance. In this study, we used proportions-based nutritional geometry to analyze the nutritional composition of rumen samples collected in winter from 481 moose (Alces alces) in southern Sweden and examine whether free-ranging moose show comparable patterns of nutrient balancing. Our main hypothesis was that wild moose actively regulate their rumen nutrient composition to offset ecologically imposed variation in the nutritional composition of available foods. To test this, we assessed the macronutritional composition (protein, carbohydrates, and lipids) of rumen contents and commonly eaten foods, including supplementary feed, across populations with contrasting winter diets, spanning an area of approximately 10,000 km2. Our results suggest that moose balanced the macronutrient composition of their rumen, with the rumen contents having consistently similar proportional relationship between protein and nonstructural carbohydrates, despite differences in available (and eaten) foods. Furthermore, we found that rumen macronutrient balance was tightly related to ingested levels of dietary fiber (cellulose and hemicellulose), such that the greater the fiber content, the less protein was present in the rumen compared with nonstructural carbohydrates. Our results also suggest that moose benefit from access to a greater variety of trees, shrubs, herbs, and grasses, which provides them with a larger nutritional space to maneuver within. Our findings provide novel theoretical insights into a model species for ungulate nutritional ecology, while also generating data of direct relevance to wildlife and forest management, such as silvicultural or supplementary feeding practices.

8.
Sci Rep ; 10(1): 1904, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024896

RESUMO

Diet quality is an important determinant of animal survival and reproduction, and can be described as the combination of different food items ingested, and their nutritional composition. For large herbivores, human landscape modifications to vegetation can limit such diet-mixing opportunities. Here we use southern Sweden's modified landscapes to assess winter diet mixtures (as an indicator of quality) and food availability as drivers of body mass (BM) variation in wild moose (Alces alces). We identify plant species found in the rumen of 323 moose harvested in Oct-Feb, and link variation in average calf BM among populations to diets and food availability. Our results show that variation in calf BM correlates with variation in diet composition, diversity, and food availability. A varied diet relatively rich in broadleaves was associated with higher calf BM than a less variable diet dominated by conifers. A diet high in shrubs and sugar/starch rich agricultural crops was associated with intermediate BM. The proportion of young production forest (0-15 yrs) in the landscape, an indicator of food availability, significantly accounted for variation in calf BM. Our findings emphasize the importance of not only diet composition and forage quantity, but also variability in the diets of large free-ranging herbivores.


Assuntos
Cervos/fisiologia , Comportamento Alimentar/fisiologia , Herbivoria/fisiologia , Animais , Biodiversidade , Variação Biológica da População/fisiologia , Peso Corporal/fisiologia , Feminino , Florestas , Masculino , Plantas , Estações do Ano , Suécia
9.
Ambio ; 49(5): 1050-1064, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31529355

RESUMO

The multi-scale approach to conserving forest biodiversity has been used in Sweden since the 1980s, a period defined by increased reserve area and conservation actions within production forests. However, two thousand forest-associated species remain on Sweden's red-list, and Sweden's 2020 goals for sustainable forests are not being met. We argue that ongoing changes in the production forest matrix require more consideration, and that multi-scale conservation must be adapted to, and integrated with, production forest development. To make this case, we summarize trends in habitat provision by Sweden's protected and production forests, and the variety of ways silviculture can affect biodiversity. We discuss how different forestry trajectories affect the type and extent of conservation approaches needed to secure biodiversity, and suggest leverage points for aiding the adoption of diversified silviculture. Sweden's long-term experience with multi-scale conservation and intensive forestry provides insights for other countries trying to conserve species within production landscapes.


Assuntos
Agricultura Florestal , Árvores , Biodiversidade , Conservação dos Recursos Naturais , Florestas , Suécia
10.
Ambio ; 49(5): 1035-1049, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31552644

RESUMO

The choice of tree species used in production forests matters for biodiversity and ecosystem services. In Sweden, damage to young production forests by large browsing herbivores is helping to drive a development where sites traditionally regenerated with Scots pine (Pinus sylvestris) are instead being regenerated with Norway spruce (Picea abies). We provide a condensed synthesis of the available evidence regarding the likely resultant implications for forest biodiversity and ecosystem services from this change in tree species. Apart from some benefits (e.g. reduced stand-level browsing damage), we identified a range of negative outcomes for biodiversity, production, esthetic and recreational values, as well as increased stand vulnerability to storm, frost, and drought damage, and potentially higher risks of pest and pathogen outbreak. Our results are directly relevant to forest owners and policy-makers seeking information regarding the uncertainties, risks, and trade-offs likely to result from changing the tree species in production forests.


Assuntos
Picea , Pinus sylvestris , Biodiversidade , Ecossistema , Florestas , Noruega , Suécia , Árvores
11.
Ambio ; 49(5): 1065-1066, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31734903

RESUMO

In the original published article, the sentence "Nevertheless, semi-natural forest remnants continue to be harvested and fragmented (Svensson et al. 2018; Jonsson et al. 2019), and over 2000 forest-associated species (of 15 000 assessed) are listed as threatened on Sweden's red-list, largely represented by macro-fungi, beetles, lichens and butterflies (Sandström 2015)."under the section Introduction was incorrect. The correct version of the sentence is "Nevertheless, semi-natural forest remnants continue to be harvested and fragmented (Svensson et al. 2018; Jonsson et al. 2019), and approximately 2000 forest-associated species (of 15 000 assessed) are on Sweden's red-list, largely represented by macro-fungi, beetles, lichens and butterflies (Sandström 2015)."

12.
J Environ Manage ; 209: 409-425, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309965

RESUMO

We review the consequences for biodiversity and ecosystem services from the industrial-scale extraction of logging residues (tops, branches and stumps from harvested trees and small-diameter trees from thinnings) in managed forests. Logging residue extraction can replace fossil fuels, and thus contribute to climate change mitigation. The additional biomass and nutrients removed, and soils and other structures disturbed, have several potential environmental impacts. To evaluate potential impacts on ecosystem services and biodiversity we reviewed 279 scientific papers that compared logging residue extraction with non-extraction, the majority of which were conducted in Northern Europe and North America. The weight of available evidence indicates that logging residue extraction can have significant negative effects on biodiversity, especially for species naturally adapted to sun-exposed conditions and the large amounts of dead wood that are created by large-scaled forest disturbances. Slash extraction may also pose risks for future biomass production itself, due to the associated loss of nutrients. For water quality, reindeer herding, mammalian game species, berries, and natural heritage the results were complicated by primarily negative but some positive effects, while for recreation and pest control positive effects were more consistent. Further, there are initial negative effects on carbon storage, but these effects are transient and carbon stocks are mostly restored over decadal time perspectives. We summarize ways of decreasing some of the negative effects of logging residue extraction on specific ecosystem services, by changing the categories of residue extracted, and site or forest type targeted for extraction. However, we found that suggested pathways for minimizing adverse outcomes were often in conflict among the ecosystem services assessed. Compensatory measures for logging residue extraction may also be used (e.g. ash recycling, liming, fertilization), though these may also be associated with adverse environmental impacts.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Animais , Europa (Continente) , Agricultura Florestal , América do Norte , Árvores
13.
J Environ Manage ; 210: 1-9, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29329003

RESUMO

We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Animais , Ecossistema , Florestas , Suécia , Árvores
14.
J Neurolinguistics ; 42: 1-11, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28579694

RESUMO

Bilingualism represents an interesting model of possible experience-dependent alterations in brain structure. The current study examines whether interhemispheric adaptations in brain structure are associated with bilingualism. Corpus callosum volume and cortical thickness asymmetry across 13 regions of interest (selected to include critical language and bilingual cognitive control areas) were measured in a sample of Spanish-English bilinguals and age- and gender-matched monolingual individuals (N = 39 per group). Cortical thickness asymmetry of the anterior cingulate region differed across groups, with thicker right than left cortex for bilinguals and the reverse for monolinguals. In addition, two adjacent regions of the corpus callosum (mid-anterior and central) had greater volume in bilinguals. The findings suggest that structural indices of interhemispheric organization in a critical cognitive control region are sensitive to variations in language experience.

15.
J Environ Manage ; 197: 404-414, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411568

RESUMO

A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Ecossistema , Madeira
16.
Ambio ; 46(3): 324-334, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28236260

RESUMO

Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.


Assuntos
Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Modelos Teóricos , Picea , Pinus , Simulação por Computador , Florestas , Árvores
17.
PLoS One ; 11(3): e0150870, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986618

RESUMO

The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose's self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Cervos/fisiologia , Herbivoria , Animais , Dieta , Proteínas Alimentares/metabolismo , Ingestão de Energia , Feminino , Masculino , Modelos Biológicos , Estado Nutricional
18.
Neuropsychologia ; 93(Pt B): 365-379, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26792368

RESUMO

Structural asymmetry varies across individuals, brain regions, and metrics of cortical organization. The current study investigated regional differences in asymmetry of cortical surface area, thickness, and local gyrification, and the extent of between-subject variability in these metrics, in a sample of healthy young adults (N=200). Between-subject variability in cortical structure may provide a means to assess the extent of biological flexibility or constraint of brain regions, and we explored the potential influence of this variability on the phenotypic expression of structural asymmetry. The findings demonstrate that structural asymmetries are nearly ubiquitous across the cortex, with differing regional organization for the three cortical metrics. This implies that there are multiple, only partially overlapping, maps of structural asymmetry. The results further indicate that the degree of asymmetry of a brain region can be predicted by the extent of the region's between-subject variability. These findings provide evidence that reduced biological constraint promotes the expression of strong structural asymmetry.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Adolescente , Adulto , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Adulto Jovem
19.
Ambio ; 45 Suppl 2: 109-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26744047

RESUMO

The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.


Assuntos
Agricultura Florestal/métodos , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Florestas , Controle de Pragas , Recreação , Suécia , Fatores de Tempo
20.
Ambio ; 45 Suppl 2: 140-51, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26744049

RESUMO

There is a growing demand for alternatives to Sweden's current dominant silvicultural system, driven by a desire to raise biomass production, meet environmental goals and mitigate climate change. However, moving towards diversified forest management that deviates from well established silvicultural practices carries many uncertainties and risks. Adaptive management is often suggested as an effective means of managing in the context of such complexities. Yet there has been scepticism over its appropriateness in cases characterised by large spatial extents, extended temporal scales and complex land ownership-characteristics typical of Swedish forestry. Drawing on published research, including a new paradigm for adaptive management, we indicate how common pitfalls can be avoided during implementation. We indicate the investment, infrastructure, and considerations necessary to benefit from adaptive management. In doing so, we show how this approach could offer a pragmatic operational model for managing the uncertainties, risks and obstacles associated with new silvicultural systems and the challenges facing Swedish forestry.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal/métodos , Florestas , Mudança Climática , Política Ambiental , Agricultura Florestal/tendências , Risco , Suécia , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...