Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011208, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517915

RESUMO

Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.


Assuntos
Optogenética , Proteínas , Animais , Animais Geneticamente Modificados
2.
Front Cell Dev Biol ; 11: 1126507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051467

RESUMO

During development, embryonic patterning systems direct a set of initially uncommitted pluripotent cells to differentiate into a variety of cell types and tissues. A core network of transcription factors, such as Zelda/POU5F1, Odd-paired (Opa)/ZIC3 and Ocelliless (Oc)/OTX2, are conserved across animals. While Opa is essential for a second wave of zygotic activation after Zelda, it is unclear whether Opa drives head cell specification, in the Drosophila embryo. Our hypothesis is that Opa and Oc are interacting with distinct cis-regulatory regions for shaping cell fates in the embryonic head. Super-resolution microscopy and meta-analysis of single-cell RNAseq datasets show that opa's and oc's overlapping expression domains are dynamic in the head region, with both factors being simultaneously transcribed at the blastula stage. Additionally, analysis of single-embryo RNAseq data reveals a subgroup of Opa-bound genes to be Opa-independent in the cellularized embryo. Interrogation of these genes against Oc ChIPseq combined with in situ data, suggests that Opa is competing with Oc for the regulation of a subgroup of genes later in gastrulation. Specifically, we find that Oc binds to late, head-specific enhancers independently and activates them in a head-specific wave of zygotic transcription, suggesting distinct roles for Oc in the blastula and gastrula stages.

3.
Biol Open ; 11(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350289

RESUMO

Nuclear mechanotransduction is a growing field with exciting implications for the regulation of gene expression and cellular function. Mechanical signals may be transduced to the nuclear interior biochemically or physically through connections between the cell surface and chromatin. To define mechanical stresses upon the nucleus in physiological settings, we generated transgenic mouse strains that harbour FRET-based tension sensors or control constructs in the outer and inner aspects of the nuclear envelope. We knocked-in a published esprin-2G sensor to measure tensions across the LINC complex and generated a new sensor that links the inner nuclear membrane to chromatin. To mitigate challenges inherent to fluorescence lifetime analysis in vivo, we developed software (FLIMvivo) that markedly improves the fitting of fluorescence decay curves. In the mouse embryo, the sensors responded to cytoskeletal relaxation and stretch applied by micro-aspiration. They reported organ-specific differences and a spatiotemporal tension gradient along the proximodistal axis of the limb bud, raising the possibility that mechanical mechanisms coregulate pattern formation. These mouse strains and software are potentially valuable tools for testing and refining mechanotransduction hypotheses in vivo.


Assuntos
Mecanotransdução Celular , Membrana Nuclear , Camundongos , Animais , Membrana Nuclear/metabolismo , Mecanotransdução Celular/fisiologia , Proteínas Nucleares/genética , Cromatina/genética , Cromatina/metabolismo , Camundongos Transgênicos , Software , Mamíferos/genética , Mamíferos/metabolismo
4.
Nat Commun ; 10(1): 1703, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979871

RESUMO

Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium.


Assuntos
Polaridade Celular , Citoesqueleto/fisiologia , Mandíbula/embriologia , Mandíbula/fisiologia , Proteína Wnt-5a/fisiologia , Citoesqueleto de Actina , Actomiosina/metabolismo , Animais , Cálcio/metabolismo , Ciclo Celular , Citosol/metabolismo , Elasticidade , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Mutação , Oscilometria , Transdução de Sinais , Estresse Mecânico , Vinculina/metabolismo , Viscosidade
5.
Curr Opin Cell Biol ; 48: 63-71, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28641117

RESUMO

The nucleus is a mechanosensitive and load-bearing structure. Structural components of the nucleus interact to maintain nuclear integrity and have become subjects of exciting research that is relevant to cell and developmental biology. Here we outline the boundaries of what is known about key architectural elements within the nucleus and highlight their potential structural and transcriptional regulatory functions.


Assuntos
Núcleo Celular/metabolismo , Animais , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/metabolismo , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Mecanotransdução Celular , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Lâmina Nuclear/química , Lâmina Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...