Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(21): e2310117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155494

RESUMO

Chemical mechanical polishing (CMP) offers a promising pathway to smooth third-generation semiconductors. However, it is still a challenge to reduce the use of additional oxidants or/and energy in current CMP processes. Here, a new and green atomically smoothing method: Piezocatalytic-CMP (Piezo-CMP) is reported. Investigation shows that the Piezo-CMP based on tetragonal BaTiO3 (t-BT) can polish the rough surface of a reaction sintering SiC (RS-SiC) to the ultra-smooth surface with an average surface roughness (Ra) of 0.45 nm and the rough surface of a single-crystal 4H-SiC to the atomic planarization Si and C surfaces with Ra of 0.120 and 0.157 nm, respectively. In these processes, t-BT plays a dual role of piezocatalyst and abrasive. That is, it piezo-catalytically generates in-situ active oxygen species to selectively oxidize protruding sites of SiC surface, yielding soft SiO2, and subsequently, it acts as a usual abrasive to mechanically remove these SiO2. This mechanism is further confirmed by density functional theory (DFT) calculation and molecular simulation. In this process, piezocatalytic oxidation is driven only by the original pressure and friction force of a conventional polishing process, thus, the piezo-CMP process do not require any additional oxidant and energy, being a green and effective polishing method.

2.
Water Res ; 209: 117922, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890911

RESUMO

Piezoelectric effect was firstly employed to improve dewatering efficiency of sludge. It was found that the piezoelectric effect could be driven directly by the pressure of pressure filtration process, without any additional energy. This piezo-dewatering process coupled piezoelectric effect with pressure filtration could efficiently remove moisture of sludge. Under 0.6 MPa for 2 h, moisture content (MC) and weight of sludge could be reduced to 63.9% and 3.2 g from 96.7% and 50 g by the piezo-dewatering process with 0.45 g t-BaTiO3. This piezo-dewatering efficiency was much higher than that of usual conditioning-pressure filtrations using CaO, FeCl3 or polyacrylamide (PAM) as the conditioners. And the piezo-dewatering process assisted by PAM could further decrease MC and weight of the sludge to 54.9% and 2.1 g, correspondingly, which complied to the advanced dewatering requirement (MC < 60%). The favorable piezo-dewatering efficiency was contributed to the piezo-catalytic oxidation and the electric role of remnant piezo-field. The finding of this piezo-dewatering mechanism offered an inspiring look at developing the emerging dewatering technology.

3.
J Hazard Mater ; 373: 640-648, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953981

RESUMO

A resource-utilization strategy of the waste PCBs was developed: preparation of high value-added silicon carbide (SiC) nanoparticles using the waste PCBs as both silica and carbon precursors. The preparation process contained three optimized steps: acid wash pretreatment with 3 mol L-1 nitric acid at 60 °C for 96 h, low-temperature pyrolysis at 500 °C to allow the epoxy resin to decompose into carbon, and high-temperature pyrolysis at 1600 °C (in situ carbothermal reduction) to gain pure SiC nanoparticles. The pseudo first-order reaction rate constant (k) of the p-n heterojunction of SiC/TiO2 towards the photocatalytic degradation of methylene blue was 0.0219 min-1, 3.42 and 3.98 times that of TiO2 and no acid washed-SiC/TiO2, respectively.

4.
J Hazard Mater ; 344: 657-668, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29154091

RESUMO

For the first time, paint sludge waste (PS) was used as a pore forming agent in the preparation of sewage sludge derived carbon (SC). The tuning role and mechanism of PS for characteristics of SC were explored. It was found that a sludge carbon (SCPS-Zn) with rich macro-, meso- and micro- porous could be produced by one-step pyrolytic process of sludge in the presence of PS and ZnCl2. Its surface area could reach as high as 680.5m2g-1 as 88.4 times and 4.8 times of sludge carbon without addition of PS and ZnCl2 (SC) and only addition of ZnCl2 (SCZn), respectively. The macro- pores fabricated by PS provided much inner-space for ZnCl2 to generate meso- and micro- porous, leading to a hierarchical porous structure. SCPS-Zn showed a high adsorption capacity of 685.4mgg-1 for Chrysophenine, which is 1.3 and 1.7 times that of SCPS and SCZn respectively. The adsorption difference could be simply attributed to the fact that the great molecules were difficult to enter micro- pores of SCZn. It was also found that the difference was also dependent on orientation of Chrysophenine, which was related to pH value of solution.

5.
Environ Sci Technol ; 51(11): 6560-6569, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28447779

RESUMO

Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO3. It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h+, e-, •H, •OH, •O2-, 1O2, and H2O2, were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O2, partly from the hole oxidation of H2O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.


Assuntos
Clorofenóis , Peróxido de Hidrogênio , Catálise , Halogenação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...