Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(6): 060501, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213196

RESUMO

As an important degree of freedom (d.o.f.) in photonic integrated circuits, the orthogonal transverse mode provides a promising and flexible way to increase communication capability, for both classical and quantum information processing. To construct large-scale on-chip multimode multi-d.o.f.s quantum systems, a transverse mode-encoded controlled-NOT (CNOT) gate is necessary. Here, with the help of our new transverse mode-dependent directional coupler and attenuator, we demonstrate the first multimode implementation of a 2-qubit quantum gate. The ability of the gate is demonstrated by entangling two separated transverse mode qubits with an average fidelity of 0.89±0.02 and the achievement of 10 standard deviations of violations in the quantum nonlocality verification. In addition, a fidelity of 0.82±0.01 is obtained from quantum process tomography used to completely characterize the CNOT gate. Our work paves the way for universal transverse mode-encoded quantum operations and large-scale multimode multi-d.o.f.s quantum systems.

2.
Phys Rev Lett ; 126(23): 230503, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170155

RESUMO

Topological photonics has been introduced as a powerful platform for integrated optics, since it can deal with robust light transport, and be further extended to the quantum world. Strikingly, valley-contrasting physics in topological photonic structures contributes to valley-related edge states, their unidirectional coupling, and even valley-dependent wave division in topological junctions. Here, we design and fabricate nanophotonic topological harpoon-shaped beam splitters (HSBSs) based on 120-deg-bending interfaces and demonstrate the first on-chip valley-dependent quantum information process. Two-photon quantum interference, namely, Hong-Ou-Mandel interference with a high visibility of 0.956±0.006, is realized with our 50/50 HSBS, which is constructed by two topologically distinct domain walls. Cascading this kind of HSBS together, we also demonstrate a simple quantum photonic circuit and generation of a path-entangled state. Our work shows that the photonic valley state can be used in quantum information processing, and it is possible to realize more complex quantum circuits with valley-dependent photonic topological insulators, which provides a novel method for on-chip quantum information processing.

3.
Nano Lett ; 20(4): 2763-2769, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32125868

RESUMO

Developing efficient charge separation strategies is essential to achieve high-power conversion efficiency in the fields of chemistry, biology, and material science. Herein, we develop a facile strategy for fabrication of unique wafer-scale radial nanowire assemblies by exploiting shear force in rotary solution. The assembly mechanism can be well revealed by the large-scale stochastic dynamics simulation. Free electrons can be rapidly generated to produce quantitatively tunable current output when the radial nanowire assemblies rotate under the magnetic field. Moreover, the photoconductive performance of the radial semiconductor nanowire assemblies can be remarkably enhanced as the electron-hole recombination was retrained by the efficient charge separation under the rotating magnetic field. Such large-scale unique nanowire assemblies will facilitate the design of an efficient charge separation process in biosystem, sensors, and photocatalysis.


Assuntos
Nanofios/química , Semicondutores , Condutividade Elétrica , Elétrons , Desenho de Equipamento , Campos Magnéticos , Processos Estocásticos
4.
Light Sci Appl ; 8: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069073

RESUMO

Multiphoton quantum states play a critical role in emerging quantum technologies and greatly improve our fundamental understanding of the quantum world. Integrated photonics is well recognized as an attractive technology offering great promise for the generation of photonic quantum states with high-brightness, tunability, stability, and scalability. Herein, we demonstrate the generation of multiphoton quantum states using a single-silicon nanophotonic waveguide. The detected four-photon rate reaches 0.34 Hz even with a low-pump power of 600 µW. This multiphoton quantum state is also qualified with multiphoton quantum interference, as well as quantum state tomography. For the generated four-photon states, the quantum interference visibilities are greater than 95%, and the fidelity is 0.78 ± 0.02. Furthermore, such a multiphoton quantum source is fully compatible with the on-chip processes of quantum manipulation, as well as quantum detection, which is helpful for the realization of large-scale quantum photonic integrated circuits (QPICs) and shows great potential for research in the area of multiphoton quantum science.

5.
Nat Commun ; 7: 11985, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321821

RESUMO

In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...