Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Phys Chem Au ; 4(4): 336-346, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39069983

RESUMO

The acid-base nature of the aqueous interface has long been controversial. Most macroscopic experiments suggest that the air-water interface is basic based on the detection of negative charges at the interface that indicates the enrichment of hydroxides (OH-), whereas microscopic studies mostly support the acidic air-water interface with the observation of hydronium (H3O+) accumulation in the top layer of the interface. It is crucial to clarify the interfacial preference of OH- and H3O+ ions for rationalizing the debate. In this work, we perform deep potential molecular dynamics simulations to investigate the preferential distribution of OH- and H3O+ ions at the aqueous interfaces. The neural network potential energy surface is trained based on density functional theory calculations with the SCAN functional, which can accurately describe the diffusion of these two ions both in the interface and in the bulk water. In contrast to the previously reported single ion enrichment, we show that both OH- and H3O+ surprisingly prefer to accumulate in interfaces but at different interfacial depths, rendering a double-layer ionic distribution within ∼1 nm near the Gibbs dividing surface. The H3O+ preferentially resides in the topmost layer of the interface, but the OH-, which is enriched in the deeper interfacial layer, has a higher equilibrium concentration due to the more negative free energy of interfacial stabilization [-0.90 (OH-) vs -0.56 (H3O+) kcal/mol]. The present finding of the ionic double-layer distribution may qualitatively offer a self-consistent explanation for the long-term controversy about the acid-base nature of the air-water interface.

2.
J Am Chem Soc ; 146(28): 19537-19546, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949461

RESUMO

It has been widely recognized that the pH environment influences the nanobubble dynamics and hydroxide ions adsorbed on the surface may be responsible for the long-term survival of the nanobubbles. However, understanding the distribution of hydronium and hydroxide ions in the vicinity of a bulk nanobubble surface at a microscopic scale and the consequent impact of these ions on the nanobubble behavior remains a challenging endeavor. In this study, we carried out deep potential molecular dynamics simulations to explore the behavior of a nitrogen nanobubble under neutral, acidic, and alkaline conditions and the inherent mechanism, and we also conducted a theoretical thermodynamic and dynamic analysis to address constraints related to simulation duration. Our simulations and theoretical analyses demonstrate a trend of nanobubble dissolution similar to that observed experimentally, emphasizing the limited dissolution of bulk nanobubbles in alkaline conditions, where hydroxide ions tend to reside slightly farther from the nanobubble surface than hydronium ions, forming more stable hydrogen bond networks that shield the nanobubble from dissolution. In acidic conditions, the hydronium ions preferentially accumulating at the nanobubble surface in an orderly manner drive nanobubble dissolution to increase the entropy of the system, and the dissolved nitrogen molecules further strengthen the hydrogen bond networks of systems by providing a hydrophobic environment for hydronium ions, suggesting both entropy and enthalpy effects contribute to the instability of nanobubbles under acidic conditions. These results offer fresh insights into the double-layer distribution of hydroxide and hydronium near the nitrogen-water interface that influences the dynamic behavior of bulk nanobubbles.

3.
Soft Matter ; 18(15): 2968-2978, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352084

RESUMO

We present a molecular dynamics simulation study on the effects of sodium chloride addition on stability of a nitrogen bulk nanobubble in water. We find that the lifetime of the bulk nanobubble is extended in the presence of NaCl and reveal the underlying mechanisms. We do not observe spontaneous accumulation or specific arrangement of ions/charges around the nanobubble. Importantly, we quantitatively show that the N2 molecule selectively diffuses through water molecules rather than pass by any ions after it leaves the nanobubble due to the much weaker water-water interactions than ion-water interactions. The strong ion-water interactions cause hydration effects and disrupt hydrogen bond networks in water, which leave fewer favorable paths for the diffusion of N2 molecules, and by that reduce the degree of freedom in the dissolution of the nanobubble and prolong its lifetime. These results demonstrate that the hydration of ions plays an important role in stability of the bulk nanobubble by affecting the dynamics of hydrogen bonds and the diffusion properties of the system, which further confirm and interpret the selective diffusion path of N2 molecules and the extension of lifetime of the nanobubble. The new atomistic insights obtained from the present research could potentially benefit the practical application of bulk nanobubbles.

4.
Sci Rep ; 8(1): 5732, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636511

RESUMO

Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.


Assuntos
Células Endoteliais/química , Glicocálix/química , Fluidez de Membrana , Simulação de Dinâmica Molecular , Estrutura Molecular , Algoritmos , Evolução Biológica , Bicamadas Lipídicas , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA