Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biology (Basel) ; 11(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36138849

RESUMO

Insulin-like growth factor 1 (IGF1) plays an important regulatory role in the regulation of growth, differentiation, and anabolism in a variety of cells. In this study, the full-length cDNA of the IGF1 gene was cloned from Hyriopsis cumingii, named HcIGF1. The expression level of HcIGF1 in six tissues (adductor muscle, foot, hepatopancreas, gill, mantle, and gonad) was determined. In addition, the localization of HcIGF1 in the mantle was analyzed by in situ hybridization, and finally the function of HcIGF1 was explored by RNA interference and prokaryotic expression. The results showed that the amino acid sequence contained a typical IIGF structural domain. The phylogenetic tree showed that HcIGF1 clustered with other marine bivalve sequences. Quantitative real-time PCR and in situ hybridization analysis showed that HcIGF1 was expressed in all tissues. The highest expression was in the foot and the lowest was in the mantle. In the mantle tissue, the hybridization signal was mainly concentrated in the outer mantle. After RNA interference, the expression of IGF1 was found to be significantly decreased (p < 0.05), and its related genes IGF1R, AKT1, and cyclin D2 were downregulated, while MAPK1 were upregulated. The recombinant HcIGF1 protein was purified and its growth-promoting effect was investigated. The results showed that the recombinant HcIGF1 protein could significantly promote the proliferative activity of the mantle cells of mussels, with the best proliferative effect at 12.5 µg/mL. The results of this study provide a new method to solve the problem of weak proliferation of shellfish cells in vitro and lay the foundation for further understanding of the growth regulation mechanism of H. cumingii, as well as a better understanding of the physiological function of IGF1 in mollusks.

3.
Fish Shellfish Immunol ; 127: 788-796, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35798247

RESUMO

In the process of production of freshwater pearl, implanted mantle pieces undergo a series of complex physiological and biochemical processes to form pearl sac, which produce pearl. This is a very important site of occurrence due to immune-induced biomineralization, while its molecular regulatory mechanism is still unclear. Here, we use proteomics to identify differentially expressed proteins (DEPs) of the mantle and pearl sac and examine the biomineralization and immune response of the pearl sac formation process in Hyriopsis cumingii. Using iTRAQ technology and bioinformatics analysis, we obtained DEP profiles between the mantle and pearl sac. A total of 1871 proteins were identified. Of these, 74 DEPs were found between the pearl sac and outer mantle, 112 DEPs between the pearl sac and inner mantle, and 124 DEPs between the outer and inner mantles. Bioinformatics analysis revealed that the screened biomineralization-related DEPs were mainly enriched in signaling pathways associated with calcium signaling, regulation of the actin cytoskeleton and protein processing in the endoplasmic reticulum, while the immune-related DEPs were mainly enriched in the Notch, Hippo, nuclear factor kappa-B (NF-κB), and transforming growth factor-ß (TGF-ß) signaling pathways. In addition, the expression of six biomineralization-related and four immune-related proteins were verified at the transcriptional level using quantitative real-time PCR. Our findings contribute to furthering the understanding of the mechanisms of pearl formation and immune response, and have long-term implications for future studies on the production of high-quality freshwater pearls and development of the freshwater pearl industry.


Assuntos
Bivalves , Unionidae , Animais , Biomineralização , Bivalves/metabolismo , Água Doce , Imunidade Inata/genética , Proteômica
4.
Mol Biol Rep ; 49(7): 6601-6611, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35616759

RESUMO

BACKGROUND: Cyclin D (CCND) plays an important role in the cell cycle and is a rate-limiting factor that facilitates the G1/S transition. METHODS: In this study, the full-length cDNA of Hc-CCND2 was isolated from freshwater pearl mussel (Hyriopsis cumingii; Hc) and amplified using the 3´/5´ RACE system. The Hc-CCND2 expression profiles were analysed by quantitative real-time PCR. Functional analysis of the Hc-CCND2 genes was examined by both RNA interference (RNAi) and overexpression in H. cumingii. RESULTS: Hc-CCND2 protein sequences were 295 amino acids long, possessed D-type cyclin signature motifs and contained conserved cyclin box domains. Hc-CCND2 was expressed in all examined tissues (adductor, foot, visceral mass, gill, outer mantle, inner mantle and gonad), with the highest expression levels found in the gill (P < 0.05). During the different developmental periods of the embryo, the relative expression of Hc-CCND2 increased with embryonic development, peaking at the blastula stage and decreasing significantly in the gastrula stage. After knockdown of Hc-CCND2 by RNAi, a significant decrease in CDK6 expression levels was found, while the percentage of cells in the G0/G1 phase significantly increased. Overexpression of Hc-CCND2 in mantle cells led to increased proliferation of cultured cells (P < 0.05). CONCLUSIONS: Our results demonstrated that Hc-CCND2 may promote cell cycle progression in H. cumingii, and that overexpression of Hc-CCND2 promotes mantle cell proliferation. These findings may provide a novel approach for improving the slow proliferation rate of shellfish cells in in vitro cultures.


Assuntos
Bivalves , Unionidae , Animais , Sequência de Bases , Bivalves/genética , Bivalves/metabolismo , Clonagem Molecular , Ciclinas/genética , Água Doce , Filogenia , Unionidae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...