Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36627113

RESUMO

Protein-ligand binding affinity prediction is an important task in structural bioinformatics for drug discovery and design. Although various scoring functions (SFs) have been proposed, it remains challenging to accurately evaluate the binding affinity of a protein-ligand complex with the known bound structure because of the potential preference of scoring system. In recent years, deep learning (DL) techniques have been applied to SFs without sophisticated feature engineering. Nevertheless, existing methods cannot model the differential contribution of atoms in various regions of proteins, and the relationship between atom properties and intermolecular distance is also not fully explored. We propose a novel empirical graph neural network for accurate protein-ligand binding affinity prediction (EGNA). Graphs of protein, ligand and their interactions are constructed based on different regions of each bound complex. Proteins and ligands are effectively represented by graph convolutional layers, enabling the EGNA to capture interaction patterns precisely by simulating empirical SFs. The contributions of different factors on binding affinity can thus be transparently investigated. EGNA is compared with the state-of-the-art machine learning-based SFs on two widely used benchmark data sets. The results demonstrate the superiority of EGNA and its good generalization capability.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Proteínas/química , Ligação Proteica , Algoritmos
2.
PLoS Comput Biol ; 18(3): e1009986, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324898

RESUMO

Protein structure alignment algorithms are often time-consuming, resulting in challenges for large-scale protein structure similarity-based retrieval. There is an urgent need for more efficient structure comparison approaches as the number of protein structures increases rapidly. In this paper, we propose an effective graph-based protein structure representation learning method, GraSR, for fast and accurate structure comparison. In GraSR, a graph is constructed based on the intra-residue distance derived from the tertiary structure. Then, deep graph neural networks (GNNs) with a short-cut connection learn graph representations of the tertiary structures under a contrastive learning framework. To further improve GraSR, a novel dynamic training data partition strategy and length-scaling cosine distance are introduced. We objectively evaluate our method GraSR on SCOPe v2.07 and a new released independent test set from PDB database with a designed comprehensive performance metric. Compared with other state-of-the-art methods, GraSR achieves about 7%-10% improvement on two benchmark datasets. GraSR is also much faster than alignment-based methods. We dig into the model and observe that the superiority of GraSR is mainly brought by the learned discriminative residue-level and global descriptors. The web-server and source code of GraSR are freely available at www.csbio.sjtu.edu.cn/bioinf/GraSR/ for academic use.


Assuntos
Redes Neurais de Computação , Proteínas , Algoritmos , Aprendizagem , Software
3.
Artigo em Inglês | MEDLINE | ID: mdl-33026978

RESUMO

Amphipathic helix (AH)features the segregation of polar and nonpolar residues and plays important roles in many membrane-associated biological processes through interacting with both the lipid and the soluble phases. Although the AH structure has been discovered for a long time, few ab initio machine learning-based prediction models have been reported, due to the limited amount of training data. In this study, we report a new deep learning-based prediction model, which is composed of a residual neural network and the uneven-thresholds decision algorithm. It is constructed on 121 membrane proteins, in total 51640 residue samples, which are curated from an up-to-date membrane protein structure database. Through a rigid 10-fold nested cross-validation experiment, we demonstrate that our model can achieve promising predictions and exceed current state-of-the-art approaches in this field. This presents a new avenue for accurately predicting AHs. Analysis on the contribution of the input residues and some cases further reveals the high interpretability and the generalization of our model.


Assuntos
Proteínas de Membrana , Redes Neurais de Computação , Algoritmos , Bases de Dados de Proteínas , Aprendizado de Máquina , Proteínas de Membrana/química
4.
Bioinformatics ; 38(3): 720-729, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34718416

RESUMO

MOTIVATION: Coiled-coil is composed of two or more helices that are wound around each other. It widely exists in proteins and has been discovered to play a variety of critical roles in biology processes. Generally, there are three types of structural features in coiled-coil: coiled-coil domain (CCD), oligomeric state and register. However, most of the existing computational tools only focus on one of them. RESULTS: Here, we describe a new deep learning model, CoCoPRED, which is based on convolutional layers, bidirectional long short-term memory, and attention mechanism. It has three networks, i.e. CCD network, oligomeric state network, and register network, corresponding to the three types of structural features in coiled-coil. This means CoCoPRED has the ability of fulfilling comprehensive prediction for coiled-coil proteins. Through the 5-fold cross-validation experiment, we demonstrate that CoCoPRED can achieve better performance than the state-of-the-art models on both CCD prediction and oligomeric state prediction. Further analysis suggests the CCD prediction may be a performance indicator of the oligomeric state prediction in CoCoPRED. The attention heads in CoCoPRED indicate that registers a, b and e are more crucial for the oligomeric state prediction. AVAILABILITY AND IMPLEMENTATION: CoCoPRED is available at http://www.csbio.sjtu.edu.cn/bioinf/CoCoPRED. The datasets used in this research can also be downloaded from the website. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Proteínas/química , Domínios Proteicos , Estrutura Secundária de Proteína
5.
J Mol Biol ; 432(4): 1279-1296, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31870850

RESUMO

Transmembrane proteins (TMPs) play important roles in many biological processes, such as cell recognition and communication. Their structures are crucial for revealing complex functions but are hard to obtain. A variety of computational algorithms have been proposed to fill the gap by predicting structures from primary sequences. In this study, we mainly focus on α-helical TMP and develop a multiscale deep learning pipeline, MemBrain 3.0, to improve topology prediction. This new protocol includes two submodules. The first module is transmembrane helix (TMH) prediction, which features the capability of accurately predicting TMH with the tail part through the incorporation of tail modeling. The prediction engine contains a multiscale deep learning model and a dynamic threshold strategy. The deep learning model is comprised of a small-scale residue-based residual neural network and a large-scale entire-sequence-based residual neural network. Dynamic threshold strategy is designed to binarize the raw prediction scores and solve the under-split problem. The second module is orientation prediction, which consists of a support vector machine (SVM) classifier and a new Max-Min assignment (MMA) strategy. One typical merit of MemBrain 3.0 is the decision mode composed of the dynamic threshold strategy and the MMA strategy, which makes it more effective for hard TMHs, such as half-TMH, back-to-back TMH, and long-TMH. Systematic experiments have demonstrated the efficacy of the new model, which is available at: www.csbio.sjtu.edu.cn/bioinf/MemBrain/.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Algoritmos , Animais , Biologia Computacional/métodos , Bases de Dados de Proteínas , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Conformação Proteica em alfa-Hélice
6.
Org Biomol Chem ; 17(34): 7938-7942, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31417995

RESUMO

A series of C-2' modified cinchonine-derived phase-transfer catalysts were synthesized and used in the enantioselective photo-organocatalytic aerobic oxidation of ß-dicarbonyl compounds with excellent yields (up to 97%) and high enantioselectivities (up to 90% ee). Furthermore, the reaction was carried out in a flow photomicroreactor, in which the heterogeneous gas-liquid-liquid asymmetric photocatalytic oxidation reaction was performed affording good yields (up to 97%) and enantioselectivities (up to 86% ee) within 0.89 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...