Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(6): e2200826, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414542

RESUMO

Polymers of intrinsic microporosity (PIMs) are a class of microporous organic materials that contain interconnected pores of less than 2 nm in diameter. Such materials are of great potential used in membranes for molecular separation, such as drug fractionation in pharmaceutical industry. However, the PIMs membranes are often susceptible to low separation selectivity toward different molecules due to their wide pore size distribution. Herein, a linear polyimide, Matrimid, is incorporated with PIM-1 (a typical member of PIMs) by solution blending, and the blends are dip-coated onto a polyimide P84 support membrane to prepare thin-film composite (TFC) membranes to control pore size distribution while keep high microporosity. The component miscibility, pore characteristics, and molecular separation performances of the Matrimid/PIM-1 TFC membranes are investigated in detail. The Matrimid and PIM-1 are partially miscible due to their similar Hansen solubility parameters. The Matrimid endows the selective layers (coatings) with narrower pore size distribution due to more compact chain packing. The prepared Matrimid/PIM-1 TFC membranes show high selectivity for separation of riboflavin (80% of retention) and isatin (only 5% of retention). The developed membranes exhibit great potential for separating molecules with different molecular weights.


Assuntos
Fracionamento Químico , Membranas Artificiais , Polímeros , Solventes , Fracionamento Químico/métodos , Isatina/química , Isatina/isolamento & purificação , Permeabilidade , Polímeros/química , Porosidade , Riboflavina/química , Riboflavina/isolamento & purificação , Solubilidade , Solventes/química
2.
PeerJ ; 10: e14426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523457

RESUMO

Agaricus bisporus growth alters the lignocellulosic composition and structure of compost. However, it is difficult to differentiate the enzyme activities of A. bisporus mycelia from the wider microbial community owing to the complication of completely speareting the mycelia from compost cultures. Macrogenomics analysis was employed in this study to examine the fermentation substrate of A. bisporus before and after mycelial growth, and the molecular mechanism of substrate utilization by A. bisporus mycelia was elucidated from the perspective of microbial communities and CAZymes in the substrate. The results showed that the relative abundance of A. bisporus mycelia increased by 77.57-fold after mycelial colonization, the laccase content was significantly increased and the lignin content was significantly decreased. Analysis of the CAZymes showed that AA10 family was extremely differentiated. Laccase-producing strains associated with AA10 family were mostly bacteria belonging to Thermobifida and Thermostaphylospora, suggesting that these bacteria may play a synergistic role in lignin decomposition along with A. bisporus mycelia. These findings provide preliminary evidence for the molecular mechanism of compost utilization by A. bisporus mycelia and offer a reference for the development and utilization of strains related to lignocellulose degradation.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , Lacase/genética , Metagenômica
3.
J Food Sci Technol ; 58(11): 4091-4101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538893

RESUMO

Sanghuangporus sanghuang (SS) is a rare medicinal polypore fungus that grows solely on Morus trees. In this study, seven grains (oats, barley, millet, rice, buckwheat, corn, and coix seed) were used as solid substrates for SS fermentation and characterized in their nutrition, functional composition, and antioxidant activities. After fermentation, the nutrient compositions of crude protein (F 1,41 = 111.1, P < 0.01), soluble protein (F 1,41 = 595.7, P < 0.01), soluble sugar (F 1,41 = 51.4, P < 0.01) and ash (F 1,41 = 227.3, P < 0.01) increased significantly. Oats were one of the best grains for SS fermentation, SS-Oat produced 6.23 mg QE/g polyphenols, 21.8 mg rutin/g flavonoids, and 2.3% triterpene. In addition, the antioxidant capacities of the seven grains all increased. Principal component analysis analysis shows that the antioxidant properties of the grains were similar after SS fermentation. The changes of antioxidant activity due to SS fermentation were corrected with corresponding grain and remarked as ΔT-AOC/ABTS+/DPPH/DNAp, that was correlated to part of changes in polyphenol, carotenoid, triterpenoids, and flavonoid contents. In summary, oats have the greatest potential for use as a fermentation substrate for health food development.

4.
PeerJ ; 9: e10452, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614258

RESUMO

Agricultural straws (AS) may serve as potential base-substances in the production of Agaricus bisporus. Six AS that occur across China were investigated in a two-stage composting experiment; lignocellulose components, AS morphology, and the effects of different AS on mushroom yields from 2015-2017 were examined. In addition, microbial biodiversity and their impact on substrate degradation were studied using 16S gene sequenc based on six different AS on the 3rd (I.F), 6th (I.S), and 10th (I.T) day of Phase I, and Phase II (II). Results showed that the six different AS exhibited differences in the progression of degradation under the same compost condition; the wheat straw, rice straw, and cotton straw induced a significantly higher mushroom yield than did the others (P < 0.05); Thermobispora, Thermopolyspora, and Vulgatibacter genera may play an important role in the different AS degradations. According to our experiments, we can adjust formulations and compost methods to obtain high-yield mushroom compost based on different AS in the future.

5.
Colloids Surf B Biointerfaces ; 195: 111212, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32645593

RESUMO

In this work, a swelling induced entrapment technique was developed to enhance the hydrophilicity and antifouling performances of polypropylene (PP) microfiltration membranes. By this method, three amphiphilic polymers with different chemical structures (i.e., a homopolymer (polypropylene glycol), a di-block copolymer (oligoethylene glycol monooctadecylether), and a tri-block copolymer of ethylene glycol (EO) and propylene glycol) were successfully implanted onto membrane surfaces to be polymer brushes with high density, without having a significant effect on the membrane pore structure. The polymer brushes significantly enhanced the hydrophilicity and protein fouling resistance of the membrane. In particular, when using the di-block copolymer with a short hydrophilic EO chain, the modified membrane showed a low water contact angle, down to 20°, and low adsorption of bovine serum albumin of 1.1 µg cm-2. Furthermore, the implanted polymer brushes exhibited excellent durability. The hydrophobic segments of amphiphilic polymers played a leading role in the implantation and stability of the brushes on the PP membrane surface. This work provides a feasible strategy to achieve surface hydrophilicity and antifouling performances in a hydrophobic membrane for use in high-efficiency water treatment.


Assuntos
Incrustação Biológica , Adsorção , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Soroalbumina Bovina
6.
PeerJ ; 8: e9859, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384895

RESUMO

Light plays an important role in the growth and differentiation of Lentinula edodes mycelia, and mycelial morphology is influenced by light wavelengths. The blue light-induced formation of brown film on the vegetative mycelial tissues of L. edodes is an important process. However, the mechanisms of L. edodes' brown film formation, as induced by blue light, are still unclear. Using a high-resolution liquid chromatography-tandem mass spectrometry integrated with a highly sensitive immune-affinity antibody method, phosphoproteomes of L. edodes mycelia under red- and blue-light conditions were analyzed. A total of 11,224 phosphorylation sites were identified on 2,786 proteins, of which 9,243 sites on 2,579 proteins contained quantitative information. In total, 475 sites were up-regulated and 349 sites were down-regulated in the blue vs red group. To characterize the differentially phosphorylated proteins, systematic bioinformatics analyses, including gene ontology annotations, domain annotations, subcellular localizations, and Kyoto Encyclopedia of Genes and Genomes pathway annotations, were performed. These differentially phosphorylated proteins were correlated with light signal transduction, cell wall degradation, and melanogenesis, suggesting that these processes are involved in the formation of the brown film. Our study provides new insights into the molecular mechanisms of the blue light-induced brown film formation at the post-translational modification level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...