Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731553

RESUMO

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Assuntos
Carvão Vegetal , Medicamentos de Ervas Chinesas , Norfloxacino , Poluentes Químicos da Água , Norfloxacino/química , Carvão Vegetal/química , Adsorção , Medicamentos de Ervas Chinesas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Termodinâmica , Purificação da Água/métodos , Concentração de Íons de Hidrogênio
2.
Heliyon ; 10(9): e29807, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737244

RESUMO

Dihydroquercetin (DHQ) is commonly used as a dietary additive, but its activity in improving brain injury with metabolic syndrome (MS) remains known. In present study, the MS rat model was induced using 10 % fructose water. The apoptosis rate of primary brain cells was detected. The HIF-1α/AKT/NR2B signalling pathway, levels of KEAP1/NRF2, HO-1 and NQO-1 were detected. In vitro experiments were performed using H2O2-stimulated PC-12 cells. The effect of DHQ on rates of cell survival and apoptosis were detected. After silencing HIF-1α, we further elucidate the mechanism of action of DHQ. The results indicated that DHQ reduced the hyperactivity and inhibited oxidative stress via increasing the levels of HIF-1α/AKT/NR2B signalling pathway, whereas regulated KEAP1/NRF2 pathway. In vitro experiments showed that the HIF-1α plays an important role in this process. Overall, DHQ may improve impaired brain function in rats with metabolic syndrome by regulating the HIF-1α/AKT/NR2B signalling pathway.

3.
Phytomedicine ; 129: 155709, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38735197

RESUMO

BACKGROUND: Cornus officinalis Sieb. Et Zucc. has the efficacy of tonifying the marrow and filling up the essence, breaking up the accumulation and opening up the orifices. Our research team found that CoS extracts were protective against Aß25-35-induced memory impairment in mice. However, the pharmacodynamic components and mechanisms by which CoS improves AD have yet to be thoroughly explored and investigated. PURPOSE: This study focused on exploring the bioactive components and pharmacodynamic mechanisms of CoS aqueous extract underlying mitochondrial damage and neuroinflammation to improve Aß25-35-induced AD. METHODS: AD mouse models were generated using Aß25-35 brain injections. Different doses of CoS aqueous extract were orally administered to mice for 28 days. The cognitive function, neuronal and synaptic damage, mitochondrial damage (mitochondrial length, mitochondrial fusion fission-related protein expression), neuroglial activation, and immune inflammatory factor and ERK pathway-related protein levels of mice were assessed. The CoS aqueous extracts components were identified using UPLC-TQ/MS and screened for cellular activity. Midivi-1 (Drp1 inhibitor) or PD98059 (ERK inhibitor) was added to Aß25-35-exposed PC12 cells to assess whether CoS and its active compounds mMorB and CorE regulate mitochondrial fission through ERK/Drp1. PC12-N9 cells were cocultured to investigate whether mMorB and CorE could regulate mitochondrial division through the ERK pathway to modulate neuroinflammation. RESULTS: CoS improved exploration and memory in AD mice, reduced synaptic and mitochondrial damage in their hippocampus, and modulated disturbed mitochondrial dynamics. Moreover, CoS inhibited ERK pathway signaling and attenuated abnormal activation of glial cells and secondary immune inflammatory responses. Additionally, in vitro experiments revealed that CoS and its compounds 7ß-O-methylmorroniside (mMorB) and Cornusdiridoid E (CorE) ameliorated mitochondrial injury caused by Aß25-35 in PC12 cells through inhibition of the ERK/Drp1 pathway. Meanwhile, mMorB and CorE ameliorated cellular inflammation by inhibiting the Ras/ERK/CREB signaling pathway. CONCLUSION: CoS aqueous extract ameliorates behavioral deficits and brain damage in Aß25-35-induced AD mice by modulating the ERK pathway to attenuate mitochondrial damage and neuroinflammation, and the compounds mMorB and CorE are the therapeutically active ingredients.

4.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607260

RESUMO

Phytochemical investigation on the fruiting bodies of the medicinal fungus Ganoderma lingzhi led to the isolation of a new norsteroid, namely ganonorsterone A (1), together with one known steroid, cyathisterol (2). The structure and absolute configuration of compound 1 were assigned by extensive analysis of MS, NMR data, and quantum-chemical calculations including electronic circular dichroism (ECD) and calculated 13C NMR-DP4+ analysis. Bioassay results showed that compound 1 displayed moderate inhibition on NO production in RAW 264.7 macrophages.

5.
Fitoterapia ; 175: 105960, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621426

RESUMO

Five undescribed eremophilane-type sesquiterpenes, remophilanetriols E-I (1-5), along with seven known compounds (6-12) were isolated from the fresh roots of Rehmannia glutinosa. Their structures were characterized by extensive spectroscopic data analysis and their absolute configurations were determined by comparing their calculated electronic circular dichroism (ECD) spectra and experimental ECD spectra. The anti-pulmonary fibrosis activities of all compounds were evaluated in vitro by MTT methods, and compounds 2, 8, 10, and 12 exhibited excellent anti-pulmonary fibrosis activities. In addition, compound 2 can reduce the levels of ROS and apoptosis in TGF-ß1-induced BEAS-2B cells.

6.
Anal Biochem ; 690: 115527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565333

RESUMO

The identification of noninvasive volatile biomarkers for lung cancer is a significant clinical challenge. Through in vitro studies, the recognition of altered metabolism in cell volatile organic compound (VOC) emitting profile, along with the occurrence of oncogenesis, provides insight into the biochemical pathways involved in the production and metabolism of lung cancer volatile biomarkers. In this research, for the first time, a comprehensive comparative analysis of the volatile metabolites in NSCLS cells (A549), SCLC cells (H446), lung normal cells (BEAS-2B), as well as metabolites in both the oxidative stress (OS) group and control group. Specifically, the combination of eleven VOCs, including n-dodecane, acetaldehyde, isopropylbenzene, p-ethyltoluene and cis-1,3-dichloropropene, exhibited potential as volatile biomarkers for lung cancer originating from two different histological sources. Furthermore, the screening process in A549 cell lines resulted in the identification of three exclusive biomarkers, isopropylbenzene, formaldehyde and bromoform. Similarly, the exclusive biomarkers 1,2,4-trimethylbenzene, p-ethyltoluene, and cis-1,3-dichloropropene were present in the H446 cell line. Additionally, significant changes in trans-2-pentene, acetaldehyde, 1,2,4-trimethylbenzene, and bromoform were observed, indicating a strong association with OS. These findings highlight the potential of volatile biomarkers profiling as a means of noninvasive identification for lung cancer diagnosis.

7.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611777

RESUMO

Iridoid components have been reported to have significant neuroprotective effects. However, it is not yet clear whether the efficacy and mechanisms of iridoid components with similar structures are also similar. This study aimed to compare the neuroprotective effects and mechanisms of eight iridoid components (catalpol (CAT), genipin (GE), geniposide (GEN), geniposidic acid (GPA), aucubin (AU), ajugol (AJU), rehmannioside C (RC), and rehmannioside D (RD)) based on corticosterone (CORT)-induced injury in PC12 cells. PC12 cells were randomly divided into a normal control group (NC), model group (M), positive drug group (FLX), and eight iridoid administration groups. Firstly, PC12 cells were induced with CORT to simulate neuronal injury. Then, the MTT method and flow cytometry were applied to evaluate the protective effects of eight iridoid components on PC12 cell damage. Thirdly, a cell metabolomics study based on ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was performed to explore changes in relevant biomarkers and metabolic pathways following the intervention of administration. The MTT assay and flow cytometry analysis showed that the eight iridoid components can improve cell viability, inhibit cell apoptosis, reduce intracellular ROS levels, and elevate MMP levels. In the PCA score plots, the sample points of the treatment groups showed a trend towards approaching the NC group. Among them, AU, AJU, and RC had a weaker effect. There were 38 metabolites (19 metabolites each in positive and negative ion modes, respectively) identified as potential biomarkers during the experiment, among which 23 metabolites were common biomarkers of the eight iridoid groups. Pathway enrichment analysis revealed that the eight iridoid components regulated the metabolism mainly in relation to D-glutamine and D-glutamate metabolism, arginine biosynthesis, the TCA cycle, purine metabolism, and glutathione metabolism. In conclusion, the eight iridoid components could reverse an imbalanced metabolic state by regulating amino acid neurotransmitters, interfering with amino acid metabolism and energy metabolism, and harmonizing the level of oxidized substances to exhibit neuroprotective effects.


Assuntos
Glucosídeos Iridoides , Glicosídeos Iridoides , Fármacos Neuroprotetores , Piranos , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Metabolômica , Iridoides/farmacologia , Aminoácidos , Biomarcadores
8.
Phytochemistry ; 222: 114098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648960

RESUMO

Nine undescribed compounds, along with eight known compounds, were isolated from the stipes of Lentinus edodes. Their structures were established by extensive spectroscopic and circular dichroism analyses. The protective effects against Aß25-35-induced N9 microglia cells injury of these compounds were tested by MTT method, and the levels of apoptosis and ROS were detected by flow cytometry. In addition, the binding sites and interactions of compound with amyloid precursor protein were revealed using molecular docking simulations. These findings further establish the structural diversity and bioactivity of stipes of L. edodes, and provide an experimental basis for targeting Alzheimer's disease as a potential strategy.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Microglia , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Lentinula/química , Linhagem Celular
9.
Chem Biodivers ; : e202400635, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687253

RESUMO

The phytochemical investigation of the fruits of Cornus officinalis yielded a new phenolic acid derivative, neophenolic acid A (1), and a novel flavonoid glycoside, (2R)-naringenin-7-O-ß-(6″-galloyl-glucopyranoside) (2a), along with six known flavonoid glycosides (2b - 7). Their structures were determined by 1D, 2D NMR and HRESIMS data. The absolute configuration of 1 was established by ECD analysis. Compounds 1 - 7 were evaluated for their neuroprotective activities against corticosterone (CORT)-induced injury in PC-12 cells. Compounds 1, 2a, 2b, 5, and 6 exhibited neuroprotective activities against CORT-induced neurotoxicity in PC-12 cells. The underlying mechanism study suggested that compounds 1, 2a, 2b, 5, and 6 were able to attenuate CORT-induced apoptosis and damage, increase the levels of MMP and decrease Ca2+ inward flow in PC-12 cells.

10.
Phytomedicine ; 129: 155651, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38688144

RESUMO

BACKGROUND: Cinnamomum cassia Presl, a traditional Chinese medicine recorded in "Shennong's Herbal Classic," has been historically used to treat respiratory diseases and is employed to address inflammation. The essential oil derived from Cinnamomum cassia bark is a primary anti-inflammatory agent. However, there remains ambiguity regarding the chemical composition of cinnamon bark essential oil (BCEO), its principal anti-inflammatory components, and their potential efficacy in typical inflammatory respiratory conditions, such as acute lung injury (ALI). PURPOSE: This study aimed to unveil the chemical composition of BCEO. In addition, the mechanism of action of BCEO in ameliorating ALI and regulating macrophage polarization through the TLR4/MyD88/NF-κB pathway was elucidated. METHODS: BCEO was extracted using supercritical fluid extraction (SFE) and characterized through gas chromatography-mass spectrometry (GC-MS) analysis. Acute oral toxicity was observed in C57BL/6 J mice. The pharmacological effects and underlying mechanisms of BCEO were evaluated in a mouse model of ALI, which was induced by administering 5 mg/kg of lipopolysaccharide (LPS) through intratracheal instillation. RESULTS: GC-MS analysis revealed 99.08% of the constituents of BCEO. The primary components of BCEO were trans-cinnamaldehyde, o-methoxycinnamaldehyde, (+)-α-muurolene, δ-cadinene, and copaene. Oral acute toxicity tests indicated that the maximum tolerated dose of BCEO was 12 g/kg/day. BCEO treatment significantly reduced lung W/D ratio, total protein concentration in BALF, levels of TNF-α, IL-6, and IL-1ß in BALF, WBC count and NEU% in peripheral blood, and lung histological damage. Pulmonary function, IL-10 levels, and LYM% in peripheral blood also showed improvement. BCEO effectively decreased the proportion of M1 phenotype macrophages in BALF, M1/M2 ratio, and apoptotic cells in the lung tissue while increasing the proportion of M2 phenotype macrophages in BALF. Furthermore, BCEO treatment led to reduced protein and mRNA levels of TLR4, MyD88, and p-p65, alongside increased p65 expression, suggesting its potential to impede the TLR4/MyD88/NF-κB signaling pathway. CONCLUSION: SFE-extracted BCEO or its major constituents could serve as a viable treatment for ALI by reducing lung inflammation, improving pulmonary function, and protecting against LPS-induced ALI in mice. This therapeutic effect is achieved by inhibiting M1 macrophage polarization, promoting M2 macrophage polarization, and suppressing the TLR4/MyD88/NF-κB signaling pathway.

11.
Soft Matter ; 20(12): 2823-2830, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451223

RESUMO

Amphiphilic asymmetric comb-like copolymers (AACCs) exhibit distinct self-assembly behaviours due to their unique architecture. However, the synthetic difficulties of well-defined AACCs have prohibited a systematic understanding of the architecture-morphology relationship. In this work, we conducted dissipative particle dynamics simulations to investigate the self-assembly behaviours of AACCs with responsive rigid side chains in selective solvents. The effects of side chain length, number of branches, and spacers on the morphology of aggregates were investigated by mapping out morphology diagrams. Besides, the numbers and surface areas of aggregates clearly depicted the morphological transitions during the self-assembly process. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviour of the AACCs with responsive rigid side chains by adjusting the bond angle parameter of the rigid chains. The results indicated that without the support of the rigid chains, the assembly structure collapsed, leading to the tube-to-channelized micelles and one-compartment-to-multicompartment vesicle morphology transformations. The simulation results are consistent with earlier experimental results, which can provide theoretical guidance for assembly toward desired nanostructures.

12.
Fitoterapia ; 175: 105907, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479617

RESUMO

Five new compounds were identified from the stems of Ephedra equisetina Bunge. Their structures were elucidated by spectroscopic methods, involving UV, IR, NMR spectrum and HRESIMS analyses. The absolute configuration of compound 2 was proved by comparing their experimental and calculated ECD spectrum. The vitro bioactive assay of all compounds suggested that compound 1, 3, 4, 5 and 6 may have potential anti-asthmatic activities.

13.
Environ Res ; 252(Pt 1): 118425, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325789

RESUMO

This study employed hydrothermal carbonization (HTC) in conjunction with ZnCl2 activation and pyrolysis to produce biochar from one traditional Chinese medicine astragali radix (AR) residue. The resultant biochar was evaluated as a sustainable adsorbent for tetracycline (TC) elimination from water. The adsorption performance of TC on two micropore-rich AR biochars, AR@ZnCl2 (1370 m2 g-1) and HAR@ZnCl2 (1896 m2 g-1), was comprehensively evaluated using adsorption isotherms, kinetics, and thermodynamics. By virtue of pore diffusion, π-π interaction, electrostatic attraction, and hydrogen bonding, the prepared AR biochar showed exceptional adsorption properties for TC. Notably, the maximum adsorption capacity (930.3 mg g-1) of TC on HAR@ZnCl2 can be achieved when the adsorbent dosage is 0.5 g L-1 and C0 is 500 mg L-1 at 323 K. The TC adsorption on HAR@ZnCl2 took place spontaneously. Furthermore, the impact of competitive ions behavior is insignificant when coexisting ion concentrations fall within the 10-100 mg L-1 range. Additionally, the produced biochar illustrated good economic benefits, with a payback of 701 $ t-1. More importantly, even after ten cycles, HAR@ZnCl2 still presented great TC removal efficiency (above 77%), suggesting a good application prosperity. In summary, the effectiveness and sustainability of AR biochar, a biowaste-derived product, were demonstrated in its ability to remove antibiotics from water, showing great potential in wastewater treatment application.

14.
Phytother Res ; 38(4): 1799-1814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330236

RESUMO

Futoquinol (Fut) is a compound extracted from Piper kadsura that has a nerve cell protection effect. However, it is unclear whether Fut has protective effects in Alzheimer's disease (AD). In this study, we aimed to explore the therapeutic effect of Fut in AD and its underlying mechanism. UPLC-MS/MS method was performed to quantify Fut in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42, Aß1-40, p-Tau, oxidative stress, apoptosis, immune cells, and inflammatory factors were measured in Aß25-35-induced mice. The content of bacterial meta-geometry was predicted in the microbial composition based on 16S rDNA. The protein levels of HK II, p-p38MAPK, and p38MAPK were detected. PC-12 cells were cultured in vitro, and glucose was added to activate glycolysis to further explore the mechanism of action of Fut intervention in AD. Fut improved the memory and learning ability of Aß25-35 mice, and reduced neuronal damage and the deposition of Aß and Tau proteins. Moreover, Fut reduced mitochondrial damage, the levels of oxidative stress, apoptosis, and inflammatory factors. Fut significantly inhibited the expression of HK II and p-p38MAPK proteins. The in vitro experiment showed that p38MAPK was activated and Fut action inhibited after adding 10 mM glucose. Fut might inhibit the activation of p38MAPK through the glycolysis pathway, thereby reducing oxidative stress, apoptosis, and inflammatory factors and improving Aß25-35-induced memory impairment in mice. These data provide pharmacological rationale for Fut in the treatment of AD.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Lignanas , Animais , Camundongos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose , Cromatografia Líquida , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/farmacologia , Lignanas/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas em Tandem
15.
Zhongguo Zhong Yao Za Zhi ; 49(2): 389-402, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403315

RESUMO

Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF-MS) was employed to examine the impact of Coptidis Rhizoma(CR) and its processed products on the metabolism in the rat model of oral ulcer due to excess heat and to compare the effectiveness of CR and its three products. Male SD rats were randomly allocated to the sham-operation(Sham), model(M, oral ulcer due to excess heat), CR, wine/Zingiberis Rhizoma Recens/Euodiae Fructus processed CR(wCR/zCR/eCR), and Huanglian Shangqing Tablets(HST) groups. Except the Sham group, the other groups were administrated with Codonopsis Radix-Astragali Radix decoction by gavage for two consecutive weeks. The anal temperature and water consumption of rats were monitored throughout the modeling period of excess heat. Following the completion of the modeling, oral ulcer was modeled with acetic acid. Hematoxylin-eosin(HE) staining was employed to observe the mucosal pathological changes in oral ulcer. A colorimetric assay was employed to determine the serum level of glutathione peroxidase(GSH-Px). Enzyme-linked immunosorbent assay(ELISA) was conducted to determine the levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), interleukin-1ß(IL-1ß), superoxide dismutase(SOD), and malondialdehyde(MDA) in the serum. The non-targeted metabolomics analysis based on UPLC-Q/TOF-MS was conducted on the serum samples. Metabolic profiles were then built, and the potential biomarkers were screened by principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA). The Mev software was used to establish a heat map and conduct cluster analysis on the quantitative results of the markers. The online databases including MBRole, KEGG, and MetaboAnalyst were used for pathway enrichment analysis and metabolic network building. The experimental results showed that the modeling led to pathological damage to the oral mucosa, elevated serum levels of TNF-α, IL-6, IL-1ß, and MDA, and lowered levels of SOD and GSH-Px in rats. The drug administration recovered all the indices to varying extents, and wCR exhibited the best performance. Non-targeted metabolomics identified 48 differential metabolites including 27 metabolites in the positive ion mode and 21 metabolites in the negative ion mode. Five enriched pathways were common, including glycerophospholipid metabolism, linoleic acid metabolism, and tyrosine metabolism. Conclusively, CR and its three processed products could alleviate the inflammation and oxidative stress injury in rats suffering from oral ulcers due to excess heat by regulating lipid and amino acid metabolism. Notably, wCR demonstrated the most significant therapeutic effect.


Assuntos
Medicamentos de Ervas Chinesas , Úlceras Orais , Ratos , Masculino , Animais , Medicamentos de Ervas Chinesas/farmacologia , Úlceras Orais/tratamento farmacológico , Interleucina-6 , Temperatura Alta , Fator de Necrose Tumoral alfa , Ratos Sprague-Dawley , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão , Superóxido Dismutase , Biomarcadores
16.
Eur J Pharmacol ; 967: 176356, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325797

RESUMO

Accumulating evidence suggests that excess fructose uptake induces metabolic syndrome and kidney injury. Here, we primarily investigated the influence of catalpol on fructose-induced renal inflammation in mice and explored its potential mechanism. Treatment with catalpol improved insulin sensitivity and hyperuricemia in fructose-fed mice. Hyperuricemia induced by high-fructose diet was associated with increases in the expressions of urate reabsorptive transporter URAT1 and GLUT9. Treatment with catalpol decreased the expressions of URAT1 and GLUT9. Futhermore, treatment with catalpol ameliorated renal inflammatory cell infiltration and podocyte injury, and these beneficial effects were associated with inhibiting the production of inflammatory cytokines including IL-1ß, IL-18, IL-6 and TNF-α. Moreover, fructose-induced uric acid triggers an inflammatory response by activiting NLRP3 inflammasome, which then processes pro-inflammatory cytokines. Treatment with catalpol could inhibit the activation of NLRP3 inflammasome as well. Additionally, TLR4/MyD88 signaling was activated in fructose-fed mice, while treatment with catalpol inhibited this activation along with promoting NF-κB nuclear translocation in fructose-fed mice. Thus, our study demonstrated that catalpol could ameliorate renal inflammation in fructose-fed mice, attributing its beneficial effects to promoting uric acid excretion and inhibit the activation of TLR4/MyD88 signaling.


Assuntos
Hiperuricemia , Glucosídeos Iridoides , Nefrite , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Inflamassomos/metabolismo , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Frutose/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , NF-kappa B/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
17.
Phytochemistry ; 220: 114003, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301946

RESUMO

Twelve undescribed compounds, including five flavonoids and seven phenols, were isolated from the stems of Ephedra equisetina Bunge. Their structures were elucidated by spectroscopic methods, including NMR spectroscopy and HRESIMS analysis. Their absolute configurations were elucidated by comparing their experimental and calculated ECD spectra. In the in vitro bioactive assay, all compounds were tested for their anti-asthmatic activities by releasing ß-Hex in C48/80-induced RBL-2H3 cells. The ß-Hex release rates of compounds 3, 8, 10, and 11 were 0.8502 ± 0.0231, 0.8802 ± 0.0805, 0.7850 ± 0.0593, and 0.8361 ± 0.0728, respectively, suggesting that compounds 3, 8, 10, and 11 have potential anti-asthmatic activities.


Assuntos
Antiasmáticos , Ephedra sinica , Ephedra , Ephedra sinica/química , Ephedra/química , Flavonoides/farmacologia , Fenóis/farmacologia
18.
Food Chem Toxicol ; 186: 114546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408633

RESUMO

Cisplatin (DDP) is widely used in the treatment of cancer as a chemotherapeutic drug. However, its severe nephrotoxicity limits the extensive application of cisplatin, which is characterized by injury and apoptosis of renal tubular epithelial cells. This study aimed to reveal the protective effect and its underlying mechanism of Indole-3-carboxaldehyde (IC) against DDP-induced AKI in mice and NRK-52E cells pretreated with PKA antagonist (H-89). Here, we reported that IC improved renal artery blood flow velocity and renal function related indicators, attenuated renal pathological changes, which were confirmed by the results of HE staining and PASM staining. Meanwhile, IC inhibited the levels of inflammatory factors, oxidative stress, CTR1, OCT2, and the levels of autophagy and apoptosis. Mitochondrial dysfunction was significantly improved as observed by TEM. To clarify the potential mechanism, NRK-52E cells induced by DDP was used and the results proved that H-89 could blocked the improvement with IC effectively in vitro. Our findings showed that IC has the potential to treat cisplatin-induced AKI, and its role in protecting the kidney was closely related to activating PKA, inhibiting autophagy and apoptosis, improving mitochondrial function, which could provide a theoretical basis for the development of new clinical drugs.


Assuntos
Injúria Renal Aguda , Indóis , Isoquinolinas , Doenças Mitocondriais , Sulfonamidas , Camundongos , Animais , Cisplatino/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Rim/patologia , Apoptose
19.
Genes (Basel) ; 15(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397145

RESUMO

Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear. To identify candidate genes involved in the biosynthesis of catalpol, transcriptomes were constructed from R. glutinosa using the young leaves of three cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, as well as the tuberous roots and adventitious roots of the Jin No. 9 cultivar. As a result, 71,142 unigenes with functional annotations were generated. A comparative analysis of the R. glutinosa transcriptomes identified over 200 unigenes of 13 enzymes potentially involved in the downstream steps of catalpol formation, including 9 genes encoding UGTs, 13 for aldehyde dehydrogenases, 70 for oxidoreductases, 44 for CYP450s, 22 for dehydratases, 30 for decarboxylases, 19 for hydroxylases, and 10 for epoxidases. Moreover, two novel genes encoding geraniol synthase (RgGES), which is the first committed enzyme in catalpol production, were cloned from R. glutinosa. The purified recombinant proteins of RgGESs effectively converted GPP to geraniol. This study is the first to discover putative genes coding the tailoring enzymes mentioned above in catalpol biosynthesis, and functionally characterize the enzyme-coding gene in this pathway in R. glutinosa. The results enrich genetic resources for engineering the biosynthetic pathway of catalpol and iridoids.


Assuntos
Monoterpenos Acíclicos , Glucosídeos Iridoides , Plantas Medicinais , Rehmannia , Plantas Medicinais/genética , Rehmannia/genética , Rehmannia/metabolismo , Perfilação da Expressão Gênica
20.
Phytochemistry ; 219: 113975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215811

RESUMO

Two previously undescribed chain diarylheptanoid derivatives (2-3), five previously undescribed dimeric diarylheptanoids (4-8), together with one known cyclic diarylheptanoid (1) were isolated from Zingiber officinale. Their structures were elucidated by extensive spectroscopic analyses (HR-ESI-MS, IR, UV, 1D and 2D NMR) and ECD calculations. Biological evaluation of compounds 1-8 revealed that compounds 2, 3 and 4 could inhibit nitrite oxide and IL-6 production in lipopolysaccharide induced RAW264.7 cells in a dose-dependent manner.


Assuntos
Zingiber officinale , Diarileptanoides/farmacologia , Diarileptanoides/química , Espectroscopia de Ressonância Magnética , Anti-Inflamatórios/farmacologia , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...