Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718120

RESUMO

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Assuntos
Inativação Gênica , Histonas , Proteínas do Grupo Polycomb , Ubiquitinação , Humanos , Histonas/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Genoma Humano , Epigênese Genética , Mutação
2.
PeerJ ; 12: e17143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618563

RESUMO

Phage display technology has become an important research tool in biological research, fundamentally changing the traditional monoclonal antibody preparation process, and has been widely used in the establishment of antigen-antibody libraries, drug design, vaccine research, pathogen detection, gene therapy, antigenic epitope research, and cellular signal transduction research.The phage display is a powerful platform for technology development. Using phage display technology, single chain fragment variable (scFv) can be screened, replacing the disadvantage of the large size of traditional antibodies. Phage display single chain antibody libraries have significant biological implications. Here we describe the types of antibodies, including chimeric antibodies, bispecific antibodies, and scFvs. In addition, we describe the phage display system, phage display single chain antibody libraries, screening of specific antibodies by phage libraries and the application of phage libraries.


Assuntos
Anticorpos Biespecíficos , Bacteriófagos , Anticorpos de Cadeia Única , Anticorpos de Cadeia Única/genética , Anticorpos Monoclonais , Bacteriófagos/genética , Tecnologia
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260504

RESUMO

Rim4 is a meiosis-specific RNA-binding protein (RBP) that sequesters mRNAs to suppress their translation. Previous work has defined the Rim4 C-terminal low-complexity domain (LCD) as sequences that form self-propagating amyloid-like aggregates. Here, we uncovered a dynamic and reversible form of Rim4 self-assembly primarily triggered by heat during meiosis, proportionally from 30°C to 42°C. The formed thermal Rim4 condensates in cell promptly stimulates stress granule (SG) assembly, recruiting SG-resident proteins, such as Pab1 and Pbp1, and strikingly, decreases the required temperature for meiotic SG formation (∼33°C) by ∼9°C as compared to mitosis (∼42°C). This sensitization of meiotic SG formation to heat effectively prevents meiosis progression and sporulation under harmful thermal turbulence. Meanwhile, the Rim4-positive meiotic SGs protect Rim4 and Rim4-sequestered mRNAs from autophagy to allow a rapid recovery from stalled meiosis upon the stress relief. Mechanistically, we found that the yeast 14-3-3 proteins (Bmh1 and Bmh2) and nucleic acids brake initiation of heat-induced Rim4 self-assembly, and Hsp104 facilitates the restoration of intracellular Rim4 distribution during the recovery.

4.
Autophagy ; 20(3): 694-696, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37927068

RESUMO

In Saccharomyces cerevisiae, macroautophagy/autophagy plays a pivotal role and is indispensable for multiple meiotic processes. In this study, we demonstrate that Rim4, a meiosis-specific RNA-binding protein (RBP) that holds back the translation of a specific subset of meiotic transcripts until its programmed degradation by autophagy during meiotic divisions, forms a heterotrimeric complex in vivo with the yeast YWHA/14-3-3 proteins Bmh1 and Bmh2, which effectively expels mRNAs from Rim4's binding grip. We pinpoint four distinct Bmh1 and Bhm2 binding sites (BBSs) in the Rim4 structure, with two of them nestled within the RNA recognition motifs (RRMs). The phosphorylation states at these BBSs controlled by counteracting PKA and Cdc14 phosphatase activities determine whether Rim4 interacts with Bmh1, Bmh2 or the mRNAs, thereby regulating Rim4's subcellular distribution, function, and stability for autophagy. Remarkably, we found that Rim4 is an Atg11-dependent selective autophagy substrate and activates Atg1 during meiotic divisions, only after its sequential dissociation from mRNAs and Bmh1 or Bmh2 assisted by PKA and cytosolic Cdc14, respectively. These findings reveal an intricate mechanism that underpins the autophagy-mediated surveillance of Rim4-mRNA interactions, orchestrated by meiotic PKA and Cdc14 activities, to ensure stage-specific translation of key meiotic transcripts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia/genética , Meiose/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Cell Rep ; 42(9): 113052, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659077

RESUMO

Meiotic gene expression in budding yeast is tightly controlled by RNA-binding proteins (RBPs), with the meiosis-specific RBP Rim4 playing a key role in sequestering mid-late meiotic transcripts to prevent premature translation. However, the mechanisms governing assembly and disassembly of the Rim4-mRNA complex, critical for Rim4's function and stability, remain poorly understood. In this study, we unveil regulation of the Rim4 ribonucleoprotein (RNP) complex by the yeast 14-3-3 proteins Bmh1 and Bmh2. These proteins form a Rim4-Bmh1-Bmh2 heterotrimeric complex that expels mRNAs from Rim4 binding. We identify four Bmh1/2 binding sites (BBSs) on Rim4, with two residing within the RNA recognition motifs (RRMs). Phosphorylation and dephosphorylation of serine/threonine (S/T) residues at these BBSs by PKA kinase and Cdc14 phosphatase activities primarily control formation of Rim4-Bmh1/2, regulating Rim4's subcellular distribution, function, and stability. These findings shed light on the intricate post-transcriptional regulatory mechanisms governing meiotic gene expression.


Assuntos
Proteínas 14-3-3 , Proteínas de Saccharomyces cerevisiae , Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Meiose , Fosforilação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell Rep ; 42(9): 113051, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37659076

RESUMO

In yeast meiosis, autophagy is active and essential. Here, we investigate the fate of Rim4, a meiosis-specific RNA-binding protein (RBP), and its associated transcripts during meiotic autophagy. We demonstrate that Rim4 employs a nuclear localization signal (NLS) to enter the nucleus, where it loads its mRNA substrates before nuclear export. Upon reaching the cytoplasm, active autophagy selectively spares the Rim4-mRNA complex. During meiotic divisions, autophagy preferentially degrades Rim4 in an Atg11-dependent manner, coinciding with the release of Rim4-bound mRNAs for translation. Intriguingly, these released mRNAs also become vulnerable to autophagy. In vitro, purified Rim4 and its RRM-motif-containing variants activate Atg1 kinase in meiotic cell lysates and in immunoprecipitated (IP) Atg1 complexes. This suggests that the conserved RNA recognition motifs (RRMs) of Rim4 are involved in stimulating Atg1 and thereby facilitating selective autophagy. Taken together, our findings indicate that autophagy surveils Rim4-mRNA interaction to ensure stage-specific translation during meiosis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Meiose , Autofagia/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Cell Rep ; 42(4): 112339, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37014752

RESUMO

The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.


Assuntos
Núcleo Celular , Complexo Repressor Polycomb 1 , Peptidase 7 Específica de Ubiquitina/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ubiquitinação , Núcleo Celular/metabolismo
8.
Front Plant Sci ; 13: 912091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599869

RESUMO

Maize is an important food crop and its fungal disease has become a limiting factor to improve the yield and quality of maize. In the control of plant pathogens, commercial fungicides have no obvious effect on corn diseases due to the emergence of drug resistance. Therefore, it is of great significance to develop new fungicides with novel structure, high efficiency, and low toxicity to control maize diseases. In this paper, a series of 1,3,4-oxadiazole derivatives were designed and synthesized from benzoyl hydrazine and aromatic aldehydes through condensation and oxidation cyclization reaction. The antifungal activity of oxadiazole derivatives against three maize disease pathogens, such as Rhizoctonia solani (R. solani), Gibberella zeae (G. zeae), and Exserohilum turcicum (E. turcicum), were evaluated by mycelium growth rate method in vitro. The results indicated that most of the synthesized derivatives exhibited positive antifungal activities. Especially against E. turcicum, several compounds demonstrated significant antifungal activities and their EC 50 values were lower than positive control carbendazim. The EC 50 values of compounds 4k, 5e, and 5k were 50.48, 47.56, 32.25 µg/ml, respectively, and the carbendazim was 102.83 µg/ml. The effects of active compounds on E. turcicum microstructure were observed by scanning electron microscopy (SEM). The results showed that compounds 4k, 5e, and 5k could induce the hyphae of E. turcicum to shrink and collapse obviously. In order to elucidate the preliminary mechanism of oxadiazole derivatives, the target compounds 5e and 5k were docked with the theoretical active site of succinate dehydrogenase (SDH). Compounds 5e and 5k could bind to amino acid residues through hydrophobic contact and hydrogen bonds, which explained the possible mechanism of binding between the inhibitor and target protein. In addition, the compounds with antifungal activities had almost no cytotoxicity to MCF-7. This study showed that 1,3,4-oxadiazole derivatives were worthy for further attention as potential antifungal agents for the control of maize diseases.

9.
Autophagy ; 18(6): 1481-1482, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35617128

RESUMO

The role of meiotic proteasome-mediated degradation has been extensively studied. At the same time, macroautophagy/autophagy only emerged recently as an essential regulator for meiosis progression. Our recent publication showed that autophagy in meiotic cells exhibits a temporal pattern distinct from that in quiescent cells or mitotic cells under prolonged starvation. Importantly, autophagic activity oscillates during meiotic cell divisions, i.e., meiosis I and meiosis II, which can accelerate meiotic progression and increase sporulation efficiency. Our in vitro and in vivo assays revealed that the conserved phosphatase Cdc14 stimulates autophagy initiation during meiotic divisions, specifically in anaphase I and II, when a subpopulation of active Cdc14 relocates to the cytosol and interacts with phagophore assembly sites (PAS) triggering the dephosphorylation of Atg13 to stimulate Atg1 kinase activity and autophagy. Together, our findings reveal a mechanism for the coordination of autophagy activity in the context of meiosis progression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Meiose , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
J Cell Biol ; 221(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35238874

RESUMO

Autophagy is a conserved eukaryotic lysosomal degradation pathway that responds to environmental and cellular cues. Autophagy is essential for the meiotic exit and sporulation in budding yeast, but the underlying molecular mechanisms remain unknown. Here, we show that autophagy is maintained during meiosis and stimulated in anaphase I and II. Cells with higher levels of autophagy complete meiosis faster, and genetically enhanced autophagy increases meiotic kinetics and sporulation efficiency. Strikingly, our data reveal that the conserved phosphatase Cdc14 regulates meiosis-specific autophagy. Cdc14 is activated in anaphase I and II, accompanying its subcellular relocation from the nucleolus to the cytoplasm, where it dephosphorylates Atg13 to stimulate Atg1 kinase activity and thus autophagy. Together, our findings reveal a meiosis-tailored mechanism that spatiotemporally controls meiotic autophagy activity to ensure meiosis progression, exit, and sporulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Autofagia , Proteínas de Ciclo Celular , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anáfase , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Meiose , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Dev Cell ; 52(2): 141-151.e5, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31991104

RESUMO

We explored the potential for autophagy to regulate budding yeast meiosis. Following pre-meiotic DNA replication, we blocked autophagy by chemical inhibition of Atg1 kinase or engineered degradation of Atg14 and observed homologous chromosome segregation followed by sister chromatid separation; cells then underwent additional rounds of spindle formation and disassembly without DNA re-replication, leading to aberrant chromosome segregation. Analysis of cell-cycle regulators revealed that autophagy inhibition prevents meiosis II-specific expression of Clb3 and leads to the aberrant persistence of Clb1 and Cdc5, two substrates of a meiotic ubiquitin ligase activated by Ama1. Lastly, we found that during meiosis II, autophagy degrades Rim4, an amyloid-like translational repressor whose timed clearance regulates protein production from its mRNA targets, which include CLB3 and AMA1. Strikingly, engineered Clb3 or Ama1 production restored meiotic termination in the absence of autophagy. Thus, autophagy destroys a master regulator of meiotic gene expression to enable irreversible meiotic exit.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Meiose/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Humanos , Meiose/fisiologia , Desnaturação Proteica
12.
Cell Mol Life Sci ; 75(5): 815-831, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28939950

RESUMO

Autophagy is a highly regulated process in eukaryotes to maintain homeostasis and manage stress responses. Understanding the regulatory mechanisms and key players involved in autophagy will provide critical insights into disease-related pathogenesis and potential clinical treatments. In this review, we describe the hallmark events involved in autophagy, from its initiation, to the final destruction of engulfed targets. Furthermore, based on structural and biochemical data, we evaluate the roles of key players in these processes and provide rationale as to how they control autophagic events in a highly ordered manner.


Assuntos
Autofagia/fisiologia , Animais , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Fusão de Membrana , Modelos Biológicos , Fagossomos/metabolismo , Fagossomos/fisiologia , Ligação Proteica
14.
Protein Cell ; 6(4): 288-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25773276

RESUMO

Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17-Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.


Assuntos
Autofagia/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alanina/química , Alanina/metabolismo , Motivos de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/deficiência , Fagossomos/química , Fagossomos/efeitos dos fármacos , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/química , Serina/metabolismo , Transdução de Sinais , Sirolimo/farmacologia
15.
Science ; 336(6080): 474-7, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22539722

RESUMO

Protein acetylation emerged as a key regulatory mechanism for many cellular processes. We used genetic analysis of Saccharomyces cerevisiae to identify Esa1 as a histone acetyltransferase required for autophagy. We further identified the autophagy signaling component Atg3 as a substrate for Esa1. Specifically, acetylation of K19 and K48 of Atg3 regulated autophagy by controlling Atg3 and Atg8 interaction and lipidation of Atg8. Starvation induced transient K19-K48 acetylation through spatial and temporal regulation of the localization of acetylase Esa1 and the deacetylase Rpd3 on pre-autophagosomal structures (PASs) and their interaction with Atg3. Attenuation of K19-K48 acetylation was associated with attenuation of autophagy. Increased K19-K48 acetylation after deletion of the deacetylase Rpd3 caused increased autophagy. Thus, protein acetylation contributes to control of autophagy.


Assuntos
Autofagia , Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Acetilação , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fagossomos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA