Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 14(19): 1847-1855, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412537

RESUMO

Acute alcoholic liver injury (AALI) is hard to diagnose on account of no obvious clinical symptoms, and thereby it easily develops into serious liver diseases and threatens people's health. However, traditional methods for detecting AALI are far from satisfactory due to the low sensitivity, invasiveness and non-visualization, and the development of new techniques is in urgent demand. Near-infrared (NIR)-II fluorescence imaging has been widely studied in biochemistry and biomedicine. As the blood flow velocity of the liver is closely related to the progression of AALI, herein, a NIR-II fluorescent nanoprobe, NTPB-NPs, was applied to diagnose AALI by monitoring the fluorescence intensity changes in the liver caused by the variations of the blood flow velocity. More importantly, when medication was applied to alleviate the liver injury of AALI mice, NTPB-NPs could also track the therapeutic effect in situ. In this study, the relationship between hepatic vascular velocity and the progression of AALI was confirmed with NTPB-NPs via NIR-II imaging. To the best of our knowledge, this is the first time that a NIR-II fluorescence imaging technique has been used to diagnose AALI mice and evaluate the therapeutic effect on AALI mice. This study may also provide a potential NIR-II imaging agent for clinical research to improve the management of liver injury related diseases.


Assuntos
Fígado , Imagem Óptica , Animais , Humanos , Fígado/diagnóstico por imagem , Camundongos , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Crit Rev Anal Chem ; 52(3): 649-666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32941060

RESUMO

The selective detection of glutathione (GSH) in vitro and in vivo has attracted great attentions, credited to its important role in life activities and association with a series of diseases. Among all kinds of analytical techniques, the fluorescent probe for GSH detection become prevalent recently because of its ease of operation, high temporal-spatial resolution, visualization and noninvasiveness, etc. The special structural features of GSH, such as the nucleophilicity of sulfhydryl group, the concerted reaction ability of amino group, the negative charged nature, the latent hydrogen bonding ability along with its flexible molecular chain, are all potent factors to be employed to design the specific fluorescent probe for GSH and discriminate it from other bio-species including its analogues cysteine (Cys) and homocysteine (Hcy). This paper reviewed the studies in the last 3 years and was organized based on the reaction mechanism of each probe. According to the reactivity of GSH, various recognition mechanisms including Michael addition, nucleophilic aromatic substitution, ordinary nucleophilic substitution, multi-site reaction, and other unique reactions have been utilized to construct the GSH specific fluorescent probes, and the molecular design strategy, photophysical property, recognition mechanism, and bioimaging application of each reported probe were all discussed here systematically. Great progress has been made in this area, and we believe the analyses and summarization of these excellent studies would provide valuable message and inspiration to researchers to advance the research toward clinic applications.


Assuntos
Corantes Fluorescentes , Glutationa , Cisteína/análise , Corantes Fluorescentes/química , Glutationa/análise
3.
Anal Bioanal Chem ; 412(28): 7819-7826, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32875370

RESUMO

Intracellular viscosity is closely related to a series of biological processes and could be a biomarker for various diseases. Herein, we reported a deep-red emission viscosity probe ACI, which showed a turn-on fluorescence effect with excellent selectivity encountering high viscous medium. To assure the practical biological application, ACI demonstrated not only a long wavelength emission at 634 nm but also a long wavelength excitation at 566 nm, which were crucial to afford deeper penetration depth and higher sensitivity in bioimaging. The photophysical properties and viscosity recognition mechanism of the probe were carefully discussed here. Theoretical calculations furtherly confirmed that high viscous medium could inhibit the twisted intramolecular charge transfer (TICT) process of the probe which quenched the fluorescence in low viscous media, and restore the emission. More importantly, it was successfully applied to visualize the viscosity in living cells. Graphical abstract.


Assuntos
Corantes Fluorescentes/química , Viscosidade , Meios de Cultura , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...