Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Biol ; 24(3): 100914, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875746

RESUMO

DIS3L, a catalytic exoribonuclease associated with the cytoplasmic exosome complex, degrades cytoplasmic RNAs and is implicated in cancers and certain other diseases in humans. Epididymis plays a pivotal role in the transport, maturation, and storage of sperm required for male fertility. However, it remains unclear whether DIS3L-mediated cytoplasmic RNA degradation plays a role in epididymis biology and functioning. Herein, we fabricated a Dis3l conditional knockout (Dis3l cKO) mouse line in which DIS3L was ablated from the principal cells of the initial segment (IS). Morphological analyses showed that spermatogenesis and IS differentiation occurred normally in Dis3l cKO mice. Additionally, the absence of DIS3L had no dramatic influence on the transcriptome of IS. Moreover, the sperm count, morphology, motility, and acrosome reaction frequency in Dis3l cKO mice were comparable to that of the control, indicating that the Dis3l cKO males had normal fertility. Collectively, our genetic model demonstrates that DIS3L inactivation in the IS is nonessential for sperm maturation and male fertility.


Assuntos
Epididimo , Exorribonucleases , Fertilidade , Maturação do Esperma , Animais , Masculino , Camundongos , Epididimo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Camundongos Knockout , Motilidade dos Espermatozoides , Espermatogênese , Espermatozoides/fisiologia , Exorribonucleases/metabolismo
2.
Appl Environ Microbiol ; 90(5): e0004624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563787

RESUMO

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Assuntos
Alginatos , Microbioma Gastrointestinal , Oligossacarídeos , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Camundongos , Animais , Humanos , Colite/microbiologia , Colite/induzido quimicamente , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana , Fibras na Dieta/metabolismo
3.
Theranostics ; 14(6): 2622-2636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646657

RESUMO

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Assuntos
Bussulfano , Ferroptose , NAD , Sirtuína 2 , Espermatogênese , Animais , Bussulfano/farmacologia , Masculino , Espermatogênese/efeitos dos fármacos , Camundongos , NAD/metabolismo , Ferroptose/efeitos dos fármacos , Sirtuína 2/metabolismo , Sirtuína 2/genética , Modelos Animais de Doenças , Testículo/metabolismo , Testículo/efeitos dos fármacos , Azoospermia/tratamento farmacológico , Azoospermia/metabolismo , Azoospermia/induzido quimicamente
4.
Gene ; 915: 148407, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38531491

RESUMO

The development of pig skeletal muscle is a complex dynamic regulation process, which mainly includes the formation of primary and secondary muscle fibers, the remodeling of muscle fibers, and the maturation of skeletal muscle; However, the regulatory mechanism of the entire developmental process remains unclear. This study analyzed the whole-transcriptome data of skeletal muscles at 27 developmental nodes (E33-D180) in Landrace pigs, and their key regulatory factors in the development process were identified using the bioinformatics method. Firstly, we constructed a transcriptome expression map of skeletal muscle development from embryo to adulthood in Landrace pig. Subsequently, due to drastic change in gene expression, the perinatal periods including E105, D0 and D9, were focused, and the genes related to the process of muscle fiber remodeling and volume expansion were revealed. Then, though conjoint analysis with miRNA and lncRNA transcripts, a ceRNA network were identified, which consist of 11 key regulatory genes (such as CHAC1, RTN4IP1 and SESN1), 7 miRNAs and 43 lncRNAs, and they potentially play an important role in the process of muscle fiber differentiation, muscle fiber remodeling and volume expansion, intramuscular fat deposition, and other skeletal muscle developmental events. In summary, we reveal candidate genes and underlying molecular regulatory networks associated with perinatal skeletal muscle fiber type remodeling and expansion. These data provide new insights into the molecular regulation of mammalian skeletal muscle development and diversity.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , MicroRNAs , Desenvolvimento Muscular , Músculo Esquelético , Transcriptoma , Animais , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Suínos/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Acta Psychol (Amst) ; 243: 104132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232507

RESUMO

Consecutive interpreting involves a demanding language task where mental workload (MWL) is crucial for assessing interpreters' performance. An elevated cognitive load in interpreters may lead to the interpretation failures. The widely used NASA-TLX questionnaire effectively measures MWL. However, a global score was employed in previous interpretation studies, overlooking the distinct contributions of MWL components to the interpreters' performance. Accordingly, we recruited twenty novice interpreters who were postgraduate students specializing in interpreting to complete the consecutive interpreting task. Throughout the process, we used functional near-infrared spectroscopy (fNIRS) to monitor the hemodynamic response in participants' brains. The NASA-TLX was used to measure the MWL during interpreting with six components, including mental demand, physical demand, temporal demand, performance, effort, and frustration. Five interpretation experts were invited to assess the interpretation quality. The Bayes factor approach was employed to explore the components that contributes the most to the interpretation quality. It indicated that mental demand strongly contributed to the interpretation quality. Moreover, the mediation analysis revealed a positive correlation between mental demand and brain activation in three brain areas, which, in turn, was negatively correlated with interpretation quality, indicating the predictive role of mental demand in interpretation quality through the mediating of brain activation. The functions of the mediating brain areas, including the inferior frontal gyrus, middle temporal gyrus, and inferior temporal gyrus, aligned with the three efforts proposed by Gile's effort model, which emphasizes the significance of three fundamental efforts in achieving successful interpreting. These findings have implications for interpreter learning and training.


Assuntos
Análise e Desempenho de Tarefas , Carga de Trabalho , Humanos , Teorema de Bayes , Carga de Trabalho/psicologia , Idioma , Encéfalo
6.
Gene ; 884: 147693, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37549855

RESUMO

Long non-coding RNA (lncRNA), a class of RNA molecules with transcripts longer than 200 nt, is crucial for maintaining animal reproductive function. Zearalenone (ZEN) damaged animal reproduction by targeting ovarian granulosa cells (GCs), especially in pigs. Nonetheless, it is not quite clear that whether Cyanidin-3-O-glucoside (C3G) exert effects on porcine GCs (pGCs) after ZEN exposure by altering lncRNA expression. Here, we sought to gain novel information regarding C3G protect against damages induced by ZEN in pGCs. The pGCs were divided into control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G groups. Results revealed that C3G effectively increased cell viability and suppressed ZEN-induced apoptosis in pGCs. 87 and 82 differentially expressed lncRNAs (DELs) were identified in ZEN vs. Ctrl and Z + C vs. ZEN group, respectively. Gene Ontology (GO) analysis observed that the DELs were related to cell metabolism and cell-matrix adhesion biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DELs were associated with the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) signaling pathway. In brief, we demonstrated that C3G could shield apoptosis induced by ZEN, which may be connected with the changes of lncRNA expression profiles in pGCs. This study complemented our understanding of the genetic basis and molecular mechanisms by which C3G mitigated the toxicity of ZEN in pGCs.


Assuntos
RNA Longo não Codificante , Zearalenona , Feminino , Suínos , Animais , Zearalenona/toxicidade , Zearalenona/metabolismo , RNA Longo não Codificante/genética , Glucosídeos/farmacologia , Glucosídeos/metabolismo , Células da Granulosa/metabolismo
7.
J Appl Stat ; 50(9): 1921-1941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378268

RESUMO

Clustered current status data are frequently encountered in biomedical research and other areas that require survival analysis. This paper proposes graphical and formal model assessment procedures to evaluate the goodness of fit of the additive hazards model to clustered current status data. The test statistics proposed are based on sums of martingale-based residuals. Relevant asymptotic properties are established, and empirical distributions of the test statistics can be simulated utilizing Gaussian multipliers. Extensive simulation studies confirmed that the proposed test procedures work well for practical scenarios. This proposed method applies when failure times within the same cluster are correlated, and in particular, when cluster sizes can be informative about intra-cluster correlations. The method is applied to analyze clustered current status data from a lung tumorigenicity study.

8.
Sci Rep ; 13(1): 8706, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248270

RESUMO

An accumulating number of studies have highlighted the importance of interpersonal neural synchronization (INS) between interlocutors in successful verbal communications. The opportunities for communication across different language contexts are rapidly expanding, thanks to the frequent interactions among people all over the world. However, whether the INS changes in different language contexts and how language choice affects the INS remain scarcely explored. The study recruited twenty pairs of participants to communicate in the first language (L1), second language (L2) and interlingual contexts. Using functional near-infrared spectroscopy (fNIRS), we examined the neural activities of interlocutors and analyzed their wavelet transform coherence to assess the INS of dyads. Results showed that as compared to the resting state, stronger INS was observed at the left inferior temporal gyrus, middle temporal gyrus, pre-motor and supplementary motor cortex, dorsolateral prefrontal cortex, and inferior frontal gyrus in L1; at the left middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus in L2; at the left inferior temporal gyrus and inferior frontal gyrus in interlingual context. Additionally, INS at the left inferior frontal gyrus was significantly stronger in L2 than in L1. These findings reveal the differences of the INS in different language contexts and confirm the importance of language choice for the INS changes.


Assuntos
Mapeamento Encefálico , Idioma , Humanos , Mapeamento Encefálico/métodos , Comunicação , Córtex Pré-Frontal , Lobo Temporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
9.
Cell Death Dis ; 14(2): 134, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797258

RESUMO

In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.


Assuntos
Fatores de Transcrição , Transcriptoma , Feminino , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Epigenômica , Meiose/genética , Cromatina/genética
10.
Chemosphere ; 310: 136811, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220427

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plastics additive that growing evidence indicates as endocrine disruptor able to negatively affect various reproductive processes both in female and male animals, including humans. However, the precise molecular mechanism of such actions is not completely understood. In the present study, scRNA-seq was performed on the ovaries of offspring from mothers exposed to DEHP from 16.5 days post coitum to 3 days post-partum, when the primordial follicle (PF) stockpile is established. While the histological observations of the offspring ovaries from DEHP exposed mothers confirmed previous data about a distinct reduction of oocytes enclosed in PFs. Focusing on oocytes, scRNA-seq analyses showed that the genes that mostly changed by DEHP were enriched GO terms related to histone H3-K4 methylation. Moreover, we observed H3K4me3 level, an epigenetics modification of H3 that is crucial for chromatin transcription, decreased by 40.28% (P < 0.01) in DEHP-treated group compared with control. When the newborn ovaries were cultured in vitro, the DEHP effects were abolished by tamoxifen (an estrogen receptor antagonist) or overexpression of Smyd3 (one specific methyltransferase of H3K4me3), in particular, the percentage of oocyte enclosed in PF was increased by 15.39% in DEHP plus Smyd3 overexpression group than of DEHP group (P < 0.01), which was accompanied by the upregulation of H3K4me3. Collectively, the present results discover Smyd3-H3K4me3 as a novel target of the deleterious ER-mediated effect of DEHP on PF formation during early folliculogenesis in the mouse and highlight epigenetics changes as prominent targets of endocrine disruptors like DEHP.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Animais , Feminino , Masculino , Camundongos , Dietilexilftalato/toxicidade , Disruptores Endócrinos/toxicidade , Histona-Lisina N-Metiltransferase , Histonas , Folículo Ovariano
11.
Cell Mol Life Sci ; 79(5): 258, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35469021

RESUMO

Previous works have shown that zearalenone (ZEA), as an estrogenic pollutant, has adverse effects on mammalian folliculogenesis. In the present study, we found that prolonged exposure of female mice to ZEA around the end of pregnancy caused severe impairment of primordial follicle formation in the ovaries of newborn mice and altered the expression of many genes in oocytes as revealed by single-cell RNA sequencing (scRNA-seq). These changes were associated with morphological and molecular alterations of mitochondria, increased autophagic markers in oocytes, and epigenetic changes in the ovaries of newborn mice from ZEA-exposed mothers. The latter increased expression of HDAC2 deacetylases was leading to decreased levels of H3K9ac and H4K12ac. Most of these modifications were relieved when the expression of  Hdac2 in newborn ovaries was reduced by RNA interference during in vitro culture in the presence of ZEA. Such changes were also alleviated in offspring ovaries from mothers treated with both ZEA and the coenzyme Q10 (CoQ10), which is known to be able to restore mitochondrial activities. We concluded that impaired mitochondrial activities in oocytes caused by ZEA are at the origin of metabolic alterations that modify the expression of genes controlling autophagy and primordial follicle assembly through changes in epigenetic histones.


Assuntos
Ovário , Zearalenona , Animais , Feminino , Humanos , Mamíferos , Camundongos , Mitocôndrias , Mães , Oócitos/metabolismo , Gravidez , Interferência de RNA , Zearalenona/metabolismo , Zearalenona/toxicidade
12.
Gene ; 829: 146511, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35447234

RESUMO

Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.


Assuntos
Micotoxinas , Zearalenona , Dano ao DNA , Humanos , Micotoxinas/farmacologia , Estresse Oxidativo , Zearalenona/toxicidade
14.
Front Cell Dev Biol ; 10: 819044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359444

RESUMO

Emerging evidence shows that m6A is the most abundant modification in eukaryotic RNA molecules. It has only recently been found that this epigenetic modification plays an important role in many physiological and pathological processes, such as cell fate commitment, immune response, obesity, tumorigenesis, and relevant for the present review, gametogenesis. Notably the RNA metabolism process mediated by m6A is controlled and regulated by a series of proteins termed writers, readers and erasers that are highly expressed in germ cells and somatic cells of gonads. Here, we review and discuss the expression and the functional emerging roles of m6A in gametogenesis and early embryogenesis of mammals. Besides updated references about such new topics, readers might find in the present work inspiration and clues to elucidate epigenetic molecular mechanisms of reproductive dysfunction and perspectives for future research.

15.
Stat Methods Med Res ; 31(3): 391-403, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878352

RESUMO

Regression analysis of multivariate interval-censored failure time data has been discussed by many authors1-6. For most of the existing methods, however, one limitation is that they only apply to the situation where the censoring is non-informative or the failure time of interest is independent of the censoring mechanism. It is apparent that this may not be true sometimes and as pointed out by some authors, the analysis that does not take the dependent censoring into account could lead to biased or misleading results7,8. In this study, we consider regression analysis of multivariate interval-censored data arising from the additive hazards model and propose an estimating equation-based approach that allows for the informative censoring. The method can be easily implemented and the asymptotic properties of the proposed estimator of regression parameters are established. Also we perform a simulation study for the evaluation of the proposed method and it suggests that the method works well for practical situations. Finally, the proposed approach is applied to a set of real data.


Assuntos
Projetos de Pesquisa , Simulação por Computador , Modelos de Riscos Proporcionais , Análise de Regressão
16.
Sci Total Environ ; 788: 147792, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134368

RESUMO

Zearalenone (ZEN) is a secondary metabolite, which is mainly produced by Fusarium fungi and exists in various feeds and agricultural products. Recently, an increasing amount of data has shown that ZEN, as an estrogen-like hormone, can have harmful effects on the female reproductive system, especially on oogenesis and folliculogenesis. Breast milk is considered to be the ideal form of nutrition for infants; however, there are some records of contaminants in food, such as mycotoxins, which may be transferred from maternal blood to milk. In this study, we investigated the toxic effects of breast milk on folliculogenesis in offspring following maternal ZEN exposure. Our results showed that maternal ZEN exposure significantly inhibited the process of primordial follicle (PF) assembly and reduced the number of PFs in suckled offspring's ovaries. In addition, RNA-seq analysis showed that RIG-I-like receptor (RLRs) signaling pathways were activated after exposed to ZEN, which increased the expression levels of DNA damage (γ-H2AX, RAD51, and PARP1) and apoptosis related protein (BAX/BCL2 and Caspase-3). Finally, ZEN exposure interfered with follicular development, as evidenced by the reduced percentages of oocyte maturation and embryonic development when the offspring grew to adolescence. It is worth noting that maternal ZEN exposure disrupted the tri-methylation levels of H3K4, H3K9, and H3K27 in the offspring's oocytes. Our results indicated that maternal ZEN exposure affected ovarian development in offspring through the breast milk, which may be detrimental to their reproductive capability in adult life.


Assuntos
Zearalenona , Feminino , Humanos , Exposição Materna , Folículo Ovariano , Ovário , Gravidez , Reprodução , Zearalenona/toxicidade
17.
Gene ; 791: 145716, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-33984447

RESUMO

Long non-coding RNA (lncRNA), a type of non-protein coding transcripts with lengths exceeding 200 nucleotides, is reported to be widely involved in many cellular and developmental processes. However, few roles of lncRNA in oocyte development have been defined. In this study, to uncover the effect of lncRNA during oocyte maturation, bovine germinal vesicle (GV) and in vitro matured metaphase II (MII) oocytes underwent RNA sequencing. Results revealed a wealth of candidate lncRNAs, which might participate in the biological processes of stage-specific oocytes. Furthermore, their trans- and cis-regulatory effects were investigated in-depth by using bioinformatic software. Functional enrichment analysis of target genes showed that these lncRNAs were likely involved in the regulation of many key signaling pathways during bovine oocyte maturation from GV to MII stage, as well as multiple lncRNA-mRNA networks. One novel lncRNA (MSTRG.19140) was particularly interesting, as it appeared to mediate the regulation of oocyte meiotic resumption, progesterone-mediated oocyte maturation, and cell cycle. Therefore, this study enhanced insights into the regulation of molecular mechanisms of bovine oocyte maturation from a lncRNA-mRNA network perspective.


Assuntos
Redes Reguladoras de Genes/genética , Oócitos/metabolismo , RNA Longo não Codificante/genética , Animais , Bovinos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Maturação in Vitro de Oócitos/métodos , Meiose/genética , Metáfase/genética , Oócitos/fisiologia , Oogênese/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
18.
Theranostics ; 11(10): 4992-5009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754040

RESUMO

Rationale: Accumulated evidence indicates that environmental plasticizers are a threat to human and animal fertility. Di (2-ethylhexyl) phthalate (DEHP), a plasticizer to which humans are exposed daily, can trigger reproductive toxicity by acting as an endocrine-disrupting chemical. In mammals, the female primordial follicle pool forms the lifetime available ovarian reserve, which does not undergo regeneration once it is established during the fetal and neonatal period. It is therefore critical to examine the toxicity of DEHP regarding the establishment of the ovarian reserve as it has not been well investigated. Methods: The ovarian cells of postnatal pups, following maternal DEHP exposure, were prepared for single cell-RNA sequencing, and the effects of DEHP on primordial follicle formation were revealed using gene differential expression analysis and single-cell developmental trajectory. In addition, further biochemical experiments, including immunohistochemical staining, apoptosis detection, and Western blotting, were performed to verify the dataset results. Results: Using single-cell RNA sequencing, we revealed the gene expression dynamics of female germ cells and granulosa cells following exposure to DEHP in mice. Regarding germ cells: DEHP impeded the progression of follicle assembly and interfered with their developmental status, while key genes such as Lhx8, Figla, and others, strongly evidenced the reduction. As for granulosa cells: DEHP likely inhibited their proliferative activity, and activated the regulation of cell death. Furthermore, the interaction between ovarian cells mediated by transforming growth factor-beta signaling, was disrupted by DEHP exposure, since the expression of GDF9, BMPR1A, and SMAD3 was affected. In addition, DNA damage and apoptosis were elevated in germ cells and/or somatic cells. Conclusion: These findings offer substantial novel insights into the reproductive toxicity of DEHP exposure during murine germ cell cyst breakdown and primordial follicle formation. These results may enhance the understanding of DEHP exposure on reproductive health.


Assuntos
Dietilexilftalato/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Plastificantes/toxicidade , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/efeitos dos fármacos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Células da Granulosa/metabolismo , Fator 9 de Diferenciação de Crescimento/efeitos dos fármacos , Fator 9 de Diferenciação de Crescimento/genética , Proteínas com Homeodomínio LIM/efeitos dos fármacos , Proteínas com Homeodomínio LIM/genética , Camundongos , Folículo Ovariano/citologia , Folículo Ovariano/embriologia , Folículo Ovariano/metabolismo , Óvulo/metabolismo , RNA-Seq , Análise de Célula Única , Proteína Smad3/efeitos dos fármacos , Proteína Smad3/genética , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética
19.
Commun Stat Theory Methods ; 49(16): 4030-4045, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33767526

RESUMO

The gap time between recurrent events is often of primary interest in many fields such as medical studies (Cook and Lawless 2007; Kang, Sun, and Zhao 2015; Schaubel and Cai 2004), and in this paper, we discuss regression analysis of the gap times arising from a general class of additive transformation models. For the problem, we propose two estimation procedures, the modified within-cluster resampling (MWCR) method and the weighted risk-set (WRS) method, and the proposed estimators are shown to be consistent and asymptotically follow the normal distribution. In particular, the estimators have closed forms and can be easily determined, and the methods have the advantage of leaving the correlation among gap times arbitrary. A simulation study is conducted for assessing the finite sample performance of the presented methods and suggests that they work well in practical situations. Also the methods are applied to a set of real data from a chronic granulomatous disease (CGD) clinical trial.

20.
Lifetime Data Anal ; 24(2): 293-309, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28058569

RESUMO

This paper discusses regression analysis of current status failure time data with information observations and continuous auxiliary covariates. Under the additive hazards model, we employ a frailty model to describe the relationship between the failure time of interest and censoring time through some latent variables and propose an estimated partial likelihood estimator of regression parameters that makes use of the available auxiliary information. Asymptotic properties of the resulting estimators are established. To assess the finite sample performance of the proposed method, an extensive simulation study is conducted, and the results indicate that the proposed method works well. An illustrative example is also provided.


Assuntos
Interpretação Estatística de Dados , Observação , Análise de Regressão , Análise de Sobrevida , Algoritmos , Viés , Modelos de Riscos Proporcionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA