Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172999

RESUMO

During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRT‒PCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRT‒PCR will greatly facilitate more in-depth research.


Assuntos
Patos , Herpesviridae , Animais , Patos/genética , DNA Viral/química , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Herpesviridae/genética , Genoma Viral
2.
Sci Total Environ ; 785: 147340, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930806

RESUMO

Ozonation was widely used before ultrafiltration processes, but its effect mechanism on protein fouling is still controversial. Ozonation of bovine serum albumin (BSA) solutions was performed in the present work. The interfacial forces of BSA at the membrane surface were measured before and after ozonation. The adsorption behaviour of BSA onto the membrane surface and the fouling layer structures under different ozone dosages were also investigated. These results were combined with the membrane fouling behaviour to identify the effect of ozonation on protein fouling. The results showed that ozonation could weaken the interaction forces between the membrane and BSA effectively, but this did not have any effect on membrane fouling. In contrast, in terms of membrane fouling behaviour after pre-ozonation, the contribution of the changes in the covalent disulfide bonds between BSA molecules outweighs those of the non-covalent bonds. The number of disulfide bonds gradually increased as the O3:DOC ratio increased from 0 to 0.3, and began to decline when the O3:DOC ratio was further increased to 0.45 and 0.6. This could have altered the deposition rate of foulants onto the membrane surface and the structure of the fouling layers, and may have caused the membrane fouling first to be enhanced and then to decline with increasing ozone dosages.

3.
Nanoscale ; 12(36): 18742-18749, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970089

RESUMO

Utilization of solar energy is very important for alleviating the global energy crisis; however, solar-to-electric energy conversion in a compact battery is a great challenge. High charging overpotential of conventional aprotic Li-O2 batteries still restricts their practical application. Herein, we propose a photo-involved rechargeable Li-O2 battery to not only realize direct solar-to-electric energy conversion/storage but also address the overpotential issue. In this photo-involved battery system, the g-C3N4-decorated WO3 nanowire array (WO3@g-C3N4 NWA) heterojunction semiconductor is used as both the photoelectrode and oxygen electrode. Upon charging under visible-light irradiation, the photoexcited holes and electrons are in situ generated on the WO3@g-C3N4 NWA heterojunction cathode. The fabrication of the heterojunction can distinctly reduce the recombination rate between electrons and holes, while photon-generated carriers are effectively and quickly separated and then migrate under a large current density. The discharge product (Li2O2) can be oxidized to O2 and Li+ with a reduced charging voltage (3.69 V) by the abundant photoexcited holes, leading to high energy efficiency, good cycling stability and excellent rate capability. This newly photo-involved reaction scheme could open new avenues toward the design of advanced solar-to-electric energy conversion and storage systems.

4.
Chem Asian J ; 13(5): 577-583, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29323788

RESUMO

As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts.

5.
Dalton Trans ; 44(5): 2333-9, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25534462

RESUMO

A reticular 3D heterometallic metal-organic framework (MOF), [Cu4Na(Mtta)5(CH3CN)]n () (N% = 40.08%), has been synthesized, using a 5-methyl tetrazole (Mtta) ligand formed from acetonitrile and azide, through in situ synthesis and structurally characterized by X-ray single crystal diffraction. The fluorescence spectra demonstrate that undergoes an interesting structural transformation in aqueous solution, yielding the compound [Cu4Na(Mtta)5H2O]n () as confirmed by (1)H NMR, IR and PXRD. Thermoanalysis showed that possesses excellent thermostability up to 335 °C. The calculated detonation properties and the sensitivity test illustrate that compound could be used as a potential explosive. In addition, the non-isothermal kinetics for were studied using the Kissinger and Ozawa-Doyle methods. The enthalpy of formation was obtained from the determination of the constant-volume combustion energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...