Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.905
Filtrar
1.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732735

RESUMO

Large-tow carbon fiber (LCF) meets the low-cost requirements of modern industry. However, due to the large and dense number of monofilaments, there are problems with uneven and insufficient infiltration during material preparation. The permeability of large-tow carbon fibers can be used as a two-scale expression of resin flow during infiltration, making it an important factor to consider. This paper provides support for the study of pore formation. A two-dimensional model of randomly bundled large-filament carbon fibers is generated based on scanning electron microscope (SEM) maps. Microstructure size parameters are obtained, and a semi-analytical model of the transverse permeability of large-filament-bundled carbon fibers is established. Permeability values are then obtained. The analysis shows that the monofilaments in the tow are arranged randomly, and their periodic arrangement cannot be used to calculate permeability. Additionally, the number of monofilaments in a carbon fiber tow of the same volume fraction affects the permeability of the tow. Therefore, the permeability model of large-tow carbon fibers is reliable.

2.
Anal Chem ; 96(19): 7756-7762, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690743

RESUMO

Cyclic peptides are an emerging therapeutic modality over the past few decades. To identify drug candidates with sufficient proteolytic stability for oral administration, it is critical to pinpoint the amide bond hydrolysis sites, or soft spots, to better understand their metabolism and provide guidance on further structure optimization. However, the unambiguous characterization of cyclic peptide soft spots remains a significant challenge during early stage discovery studies, as amide bond hydrolysis forms a linearized isobaric sequence with the addition of a water molecule, regardless of the amide hydrolysis location. In this study, an innovative strategy was developed to enable the rapid and definitive identification of cyclic peptide soft spots by isotope-labeled reductive dimethylation and mass spectrometry fragmentation. The dimethylated immonium ion with enhanced MS signal at a distinctive m/z in MS/MS fragmentation spectra reveals the N-terminal amino acid on a linearized peptide sequence definitively and, thus, significantly simplifies the soft spot identification workflow. This approach has been evaluated to demonstrate the potential of isotope-labeled dimethylation to be a powerful analytical tool in cyclic peptide drug discovery and development.


Assuntos
Marcação por Isótopo , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Metilação , Espectrometria de Massas em Tandem/métodos , Oxirredução , Sequência de Aminoácidos
3.
Front Physiol ; 15: 1368542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706946

RESUMO

Background: Many people infected with COVID-19 develop myocardial injury. Epicardial adipose tissue (EAT) is among the various risk factors contributing to coronary artery disease. However, its correlation with myocardial injury in patients diagnosed with COVID-19 remains uncertain. Methods: We examined myocardial biomarkers in population affected by COVID-19 during the period from December 2022 to January 2023. The patients without myocardial injury were referred to as group A (n = 152) and those with myocardial injury were referred to as group B (n = 212). Results: 1) The A group and the B group exhibitedstatistically significant differences in terms of age, TC, CRP, Cr, BUN, LDL-C, IL-6, BNP, LVEF and EAT (p < 0.05). 2) EAT volumehad a close relationship with IL-6, LDL-C, cTnI, and CRP (p < 0.05); the corresponding correlation coefficient values were 0.24, 0.21, 0.24, and 0.16. In contrast to those with lower EAT volume, more subjects with a higher volume of EAT had myocardial injury (p < 0.05). Regression analysis showed that EAT, LDL-C, Age and Cr were established as independent risk variables for myocardial injury in subjects affected by COVID-19. 3) In COVID-19 patients, the likelihood of myocardial injury rised notably as EAT levels increase (p < 0.001). Addition of EAT to the basic risk model for myocardial injury resulted in improved reclassification. (Net reclassification index: 58.17%, 95% CI: 38.35%, 77.99%, p < 0.001). Conclusion: Patients suffering from COVID-19 with higher volume EAT was prone to follow myocardial injury and EAT was an independent predictor of heart damage in these individuals.

4.
Protein Sci ; 33(6): e5012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723180

RESUMO

The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.


Assuntos
RNA Polimerases Dirigidas por DNA , Escherichia coli , Ativação Transcricional , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Regulação Bacteriana da Expressão Gênica , Multimerização Proteica , Sítios de Ligação
5.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38713825

RESUMO

Whether, to what extent, and how the axons in the central nervous system (CNS) can withstand sudden mechanical impacts remain unclear. By using a microfluidic device to apply controlled transverse mechanical stress to axons, we determined the stress levels that most axons can withstand and explored their instant responses at nanoscale resolution. We found mild stress triggers a highly reversible, rapid axon beading response, driven by actomyosin-II-dependent dynamic diameter modulations. This mechanism contributes to hindering the long-range spread of stress-induced Ca2+ elevations into non-stressed neuronal regions. Through pharmacological and molecular manipulations in vitro, we found that actomyosin-II inactivation diminishes the reversible beading process, fostering progressive Ca2+ spreading and thereby increasing acute axonal degeneration in stressed axons. Conversely, upregulating actomyosin-II activity prevents the progression of initial injury, protecting stressed axons from acute degeneration both in vitro and in vivo. Our study unveils the periodic actomyosin-II in axon shafts cortex as a novel protective mechanism, shielding neurons from detrimental effects caused by mechanical stress.


Assuntos
Actomiosina , Axônios , Estresse Mecânico , Animais , Camundongos , Actomiosina/metabolismo , Axônios/metabolismo , Axônios/patologia , Cálcio/metabolismo , Células Cultivadas , Degeneração Neural/patologia , Ratos
6.
Sci Total Environ ; 932: 172876, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692326

RESUMO

Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 µg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17ß, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3ß, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.


Assuntos
Poliestirenos , Reprodução , Triclosan , Poluentes Químicos da Água , Peixe-Zebra , Animais , Triclosan/toxicidade , Poliestirenos/toxicidade , Feminino , Masculino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fatores Sexuais
7.
Biomed Environ Sci ; 37(4): 387-398, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38727161

RESUMO

Objective: Recombinase-aided polymerase chain reaction (RAP) is a sensitive, single-tube, two-stage nucleic acid amplification method. This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Acinetobacter baumannii (AB) in the bloodstream based on recombinant human mannan-binding lectin protein (M1 protein)-conjugated magnetic bead (M1 bead) enrichment of pathogens combined with RAP. Methods: Recombinant plasmids were used to evaluate the assay sensitivity. Common blood influenza bacteria were used for the specific detection. Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR (M-RAP) and quantitative PCR (qPCR) assays. Kappa analysis was used to evaluate the consistency between the two assays. Results: The M-RAP method had sensitivity rates of 1, 10, and 1 copies/µL for the detection of SA, PA, and AB plasmids, respectively, without cross-reaction to other bacterial species. The M-RAP assay obtained results for < 10 CFU/mL pathogens in the blood within 4 h, with higher sensitivity than qPCR. M-RAP and qPCR for SA, PA, and AB yielded Kappa values of 0.839, 0.815, and 0.856, respectively ( P < 0.05). Conclusion: An M-RAP assay for SA, PA, and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.


Assuntos
Bacteriemia , Lectina de Ligação a Manose , Humanos , Lectina de Ligação a Manose/sangue , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Bacteriemia/sangue , Recombinases/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/genética , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/genética , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Bactérias/genética , Bactérias/isolamento & purificação
8.
Anal Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743814

RESUMO

Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.

9.
Ear Nose Throat J ; : 1455613241254433, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747325

RESUMO

Objective: The aim of this study is to investigate the effectiveness of combining hyperbaric oxygen therapy (HBOT) with conventional pharmacological interventions in the management of type 2 diabetes mellitus concurrent with sudden deafness. Methods: A cohort of 96 patients diagnosed with sudden deafness was enrolled and subsequently randomized into 2 groups: a treatment group (n = 50) and a control group (n = 46). The control group received standard conventional treatment aimed at enhancing microcirculation and nutritional support for nerves, while the treatment group underwent conventional symptomatic treatment coupled with HBOT. The evaluation encompassed the monitoring of blood glucose and blood lipid levels, clinical efficacy, and absolute hearing threshold improvement in both groups. Results: Following the intervention, noteworthy reductions in blood glucose and blood lipid levels were observed in both groups compared to their respective pretreatment values. Furthermore, posttreatment values in the treatment group exhibited a statistically significant decrease in comparison to those in the control group (P < .05). On assessing clinical efficacy posttreatment, the treatment group demonstrated a significantly higher efficacy than the control group (P < .05). In addition, the absolute hearing thresholds in both groups exhibited a significant decrease posttreatment compared to baseline values. Notably, the treatment group displayed a statistically significant reduction in absolute hearing thresholds compared to the control group posttreatment (P < .05). Conclusion: The combined therapeutic approach utilizing hyperbaric oxygen exhibits effectiveness in mitigating auditory impairment among individuals manifesting sudden deafness concomitant with type 2 diabetes mellitus. Furthermore, this treatment approach is associated with a concurrent reduction in blood glucose and blood lipid levels.

10.
Adv Sci (Weinh) ; : e2401009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751156

RESUMO

Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.

11.
Front Plant Sci ; 15: 1385768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595767

RESUMO

Citrus canker disease affects citrus production. This disease is caused by Xanthomonas citri subsp. citri (Xcc). Previous studies confirmed that during Xcc infection, PthA4, a transcriptional activator like effector (TALE), is translocated from the pathogen to host plant cells. PthA4 binds to the effector binding elements (EBEs) in the promoter region of canker susceptibility gene LOB1 (EBEPthA4-LOBP) to activate its expression and subsequently cause canker symptoms. Previously, the Cas12a/CBE co-editing method was employed to disrupt EBEPthA4-LOBP of pummelo, which is highly homozygous. However, most commercial citrus cultivars are heterozygous hybrids and more difficult to generate homozygous/biallelic mutants. Here, we employed Cas12a/CBE co-editing method to edit EBEPthA4-LOBP of Hamlin (Citrus sinensis), a commercial heterozygous hybrid citrus cultivar grown worldwide. Binary vector GFP-p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1 was constructed and shown to be functional via Xcc-facilitated agroinfiltration in Hamlin leaves. This construct allows the selection of transgene-free regenerants via GFP, edits ALS to generate chlorsulfuron-resistant regenerants as a selection marker for genome editing resulting from transient expression of the T-DNA via nCas9-mPBE:ALS2:ALS1, and edits gene(s) of interest (i.e., EBEPthA4-LOBP in this study) through ttLbCas12a, thus creating transgene-free citrus. Totally, 77 plantlets were produced. Among them, 8 plantlets were transgenic plants (#HamGFP1 - #HamGFP8), 4 plantlets were transgene-free (#HamNoGFP1 - #HamNoGFP4), and the rest were wild type. Among 4 transgene-free plantlets, three lines (#HamNoGFP1, #HamNoGFP2 and #HamNoGFP3) contained biallelic mutations in EBEpthA4, and one line (#HamNoGFP4) had homozygous mutations in EBEpthA4. We achieved 5.2% transgene-free homozygous/biallelic mutation efficiency for EBEPthA4-LOBP in C. sinensis cv. Hamlin, compared to 1.9% mutation efficiency for pummelo in a previous study. Importantly, the four transgene-free plantlets and 3 transgenic plantlets that survived were resistant against citrus canker. Taken together, Cas12a/CBE co-editing method has been successfully used to generate transgene-free canker-resistant C. sinensis cv. Hamlin in the T0 generation via biallelic/homozygous editing of EBEpthA4 of the canker susceptibility gene LOB1.

12.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559224

RESUMO

Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within MEC and between HPC-MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.

13.
J Am Chem Soc ; 146(15): 10953-10962, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565222

RESUMO

We report light gating in synthetic one-dimensional nanochannels of stable crystalline porous covalent organic frameworks. The frameworks consist of 2D hexagonal skeletons that are extended over the x-y plane and stacked along the z-direction to create dense yet aligned 1D mesoporous channels. The pores are designed to be photoadaptable by covalently integrating tetrafluoro-substituted azobenzene units onto edges, which protrude from walls and offer light-gating machinery confined in the channels. The implanted tetrafluoroazobenzene units are thermally stable yet highly sensitive to visible light to induce photoisomerization between the E and Z forms. Remarkably, photoisomerization induces drastic changes in intrapore polarity as well as pore shape and size, which exert profound effects on the molecular adsorption of a broad spectrum of compounds, ranging from inorganic iodine to organic dyes, drugs, and enzymes. Unexpectedly, the systems respond rapidly to visible lights to gate the molecular release of drugs and enzymes. Photoadaptable covalent organic frameworks with reversibly convertible pores offer a platform for constructing light-gating porous materials and tailorable delivery systems, remotely controlled by visible lights.

14.
Pest Manag Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578108

RESUMO

BACKGROUND: Bacterial virulence factors are involved in various biological processes and mediate persistent bacterial infections. Focusing on virulence factors of phytopathogenic bacteria is an attractive strategy and crucial direction in pesticide discovery to prevent invasive and persistent bacterial infection. Hence, discovery and development of novel agrochemicals with high activity, low-risk, and potent anti-virulence is urgently needed to control plant bacterial diseases. RESULTS: A series of novel ß-hydroxy pyridinium cation decorated pterostilbene derivatives were prepared and their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) were systematacially assessed. Among these pterostilbene derivatives, compound 4S exhibited the best antibacterial activity against Xoo in vitro, with an half maximal effective concentration (EC50) value of 0.28 µg mL-1. A series of biochemical assays including scanning electron microscopy, crystal violet staining, and analysis of biofilm formation, swimming motility, and related virulence factor gene expression levels demonstrated that compound 4S could function as a new anti-virulence factor inhibitor by interfering with the bacterial infection process. Furthermore, the pot experiments provided convinced evidence that compound 4S had the high control efficacy (curative activity: 71.4%, protective activity: 72.6%), and could be used to effectively manage rice bacterial leaf blight in vivo. CONCLUSION: Compounds 4S is an attractive virulence factor inhibitor with potential for application in treating plant bacterial diseases by suppressing production of several virulence factors. © 2024 Society of Chemical Industry.

15.
Front Immunol ; 15: 1377270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585268

RESUMO

Introduction: Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods: First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results: We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion: Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/genética , Edição de Genes , Regulação para Baixo
16.
Cancer Res ; 84(9): 1460-1474, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593213

RESUMO

Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.


Assuntos
Proliferação de Células , Fator 1 de Elongação de Peptídeos , Biossíntese de Proteínas , RNA Longo não Codificante , RNA de Transferência , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Camundongos , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
17.
J Clin Lab Anal ; : e25038, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590133

RESUMO

OBJECTIVE: This study aimed to establish a highly sensitive and rapid single-tube, two-stage, multiplex recombinase-aided qPCR (mRAP) assay to specifically detect the khe, blaKPC-2, and blaNDM-1 genes in Klebsiella pneumoniae. METHODS: mRAP was carried out in a qPCR instrument within 1 h. The analytical sensitivities of mRAP for khe, blaKPC-2, and blaNDM-1 genes were tested using recombinant plasmids and dilutions of reference strains. A total of 137 clinical isolates and 86 sputum samples were used to validate the clinical performance of mRAP. RESULTS: mRAP achieved the sensitivities of 10, 8, and 14 copies/reaction for khe, blaKPC-2, and blaNDM-1 genes, respectively, superior to qPCR. The Kappa value of qPCR and mRAP for detecting khe, blaKPC-2, and blaNDM-1 genes was 1, 0.855, and 1, respectively (p < 0.05). CONCLUSION: mRAP is a rapid and highly sensitive assay for potential clinical identification of khe, blaKPC-2, and blaNDM-1 genes in K. pneumoniae.

18.
Chem Biol Drug Des ; 103(4): e14513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570322

RESUMO

Taxol (paclitaxel) is the first approved microtubule-stabilizing agent (MSA) by binding stoichiometrically to tubulin, which is considered to be one of the most significant advances in first-line chemotherapy against diverse tumors. However, a large number of residue missence mutations harboring in the tubulin have been observed to cause acquired drug resistance, largely limiting the clinical application of Taxol and its analogs in chemotherapy. A systematic investigation of the intermolecular interactions between the Taxol and various tubulin mutants would help to establish a comprehensive picture of drug response to tubulin mutations in clinical treatment of cancer, and to design new MSA agents with high potency and selectivity to overcome drug resistance. In this study, we described an integration of in silico analysis and in vitro assay (iSiV) to profile Taxol against a panel of 149 clinically observed, cancer-associated missence mutations in ß-tubulin at molecular and cellular levels, aiming to a systematic understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity conferring from tubulin mutations. It is revealed that the Taxol-resistant mutations can be classified into three types: (I) nonbonded interaction broken due to mutation, (II) steric hindrance caused by mutation, and (III) conformational change upon mutation. In addition, we identified three new Taxol-resistant mutations (C239Y, T274I, and R320P) that can largely reduce the binding affinity of Taxol to tubulin at molecular level, in which the T274I and R320P were observed to considerably impair the antitumor activity of Taxol at cellular level. Moreover, a novel drug-susceptible mutation (M363T) was also identified, which improves Taxol affinity by 2.6-fold and decreases Taxol antitumor EC50 values from 29.4 to 18.7 µM.


Assuntos
Paclitaxel , Tubulina (Proteína) , Paclitaxel/farmacologia , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Mutação , Resistência a Medicamentos
19.
Neuroradiol J ; : 19714009241242586, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557275

RESUMO

OBJECTIVE: Intracranial intracranial dural arteriovenous fistulas (DAVFs) are mainly treated with an endovascular approach and various embolic agents. The aim of this study was to investigate the efficacy and safety of Onyx embolization in the treatment of DAVFs and characterize the factors as sociated with complete obliteration. METHODS: This retrospective study was based on 62 patients with DAVFs who underwent endovascular treatment with Onyx alone or in combination with coils at our institution. Clinical and imaging data were collected and analyzed. RESULTS: A total of 62 patients with 64 DAVFs were treated with endovascular embolization. The most common primary symptom was ophthalmological signs with a rate of 37.1%. Cognard type III was the most commonly seen subtype (32.8%). The immediate complete occlusion and follow-up rate was 92.2% and 93.5%, respectively. Transvenous balloon-assisted sinus protection was used in 12 patients (18.8%). The pressure cooker technique was used in eight patients (12.5%). Complications were seen in five patients including intracerebral hemorrhage (n = 2), venous thrombotic events (n = 2), and glued microcatheter (n = 1). CONCLUSIONS: Endovascular Onyx alone or in combination with coils embolization is a safe and effective therapy for DAVFs. Favorable angiographic and clinical outcomes can be achieved using different endovascular approaches. Transvenous balloon-assisted sinus protection and the pressure cooker technique may help achieve complete occlusion of DAVFs.

20.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645259

RESUMO

The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...