Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 39(8): 2391-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24979001

RESUMO

Angled laser diodes based on the longitudinal photonic band crystal (PBC) waveguide are first proposed and fabricated at a wavelength of 905 nm. Tilted sidewalls are utilized to reflect the light downward, thus enlarging the transverse mode size. In the experiment, continuous wave (CW) output power of 630 mW/facet is achieved, and stable and narrow divergence angles are obtained in the fast and slow axes, simultaneously. The transverse angle is reduced by 44% compared with that of the conventional broad area (BA) laser based on the same wafer, and the lateral angle is only 1.65° with on-axis main-lobe emission. This device shows a promising future for laser emission with ultra-narrow divergence and easy fabrication.

2.
J Microsc ; 246(1): 11-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22171593

RESUMO

Effect of aging on the morphology of bitumen was investigated. Two bitumens were aged according to the thin film oven test (TFOT), pressure aging vessel (PAV) test and ultraviolet (UV) radiation, respectively. The morphology of the binders before and after aging was characterized by atomic force microscopy. The physical properties and chemical compositions of the binders were also measured. The results showed that aging affected the bitumen morphology significantly. Aging increased the overall surface stiffness of the bitumen and made the bitumen surface more solid-like. The extent of these changes was dependent on aging conditions. TFOT decreased the contrast between the dispersed domains and the matrix, which contributed to the single-phase trend of the binders. The effect of PAV aging on morphology of the binders was dependent on the base bitumen. In one case, it further accelerated the single-phase trend of bitumen in comparison with that after TFOT. In the other case, it caused the phase separation of bitumen. In both cases, PAV aging increased the surface roughness of the binders obviously. As a result of UV aging, the contrast between the matrix phase and dispersed phase was increased due to the difference in sensitivity to UV radiation of the bitumen molecules, which caused or further promoted the phase separation in the binders. Regardless of the aging procedure carried out, a strong correlation was observed between the changes in morphology and physical properties as well as chemical compositions of the binders before and after aging.

3.
J Med Eng Technol ; 31(4): 239-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17566927

RESUMO

Previously it has been found by pump haemolysis testing that the flow rate has a remarkable effect on index of haemolysis (IH), while pressure head does not affect IH. Recent investigation with particle image velocimetry (PIV) technology has demonstrated that IH is directly related to the flow pattern of stream field in impeller vane channels. PIV is a visible approach showing the real flow status in the pump. The different positions of a tracer particle in two PIV pictures taken at 20 micros intervals decide the velocity value and direction. The velocity vectors of many particles draw the flow pattern of the stream field. The same pictures are taken at 2, 4 and 6 l min(-1) flow rates while the pressure head is kept unchanged at 100 mmHg; then the pictures are taken at 4 l min(-1) flow with different pressure heads of 80, 100 and 120 mmHg. Results reveal that the flow rate of 4 l min(-1) (IH = 0.030) has the best stream field, and neither turbulence nor separation can be seen. In other flow rates (IH: 0.048 - 0.082), there is obviously second flow. Meanwhile, no significant difference can be seen among the PIV pictures of different pressure heads pumped, which agrees with the results of haemolysis testing showing that pressure has no effect on pump haemolysis. It may be concluded that the haemolysis property of a centrifugal pump can be assessed approximately by PIV pictures, which are much easier to take than haemolysis tests.


Assuntos
Desenho de Equipamento/métodos , Coração Auxiliar/normas , Hemólise , Engenharia Biomédica/métodos , Engenharia Biomédica/normas , Humanos , Fluxo Pulsátil
4.
J Med Eng Technol ; 30(6): 353-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17060163

RESUMO

Computational fluid dynamics (CFD) technology was applied to predict the flow patterns in the authors' streamlined blood pump and an American bio-pump with straight vanes and shroud, respectively. Meanwhile, haemolysis comparative tests of the two pumps were performed to verify the theoretical analysis. The results revealed that the flow patterns in the streamlined impeller are coincident with its logarithmic vanes and parabolic shroud, and there is neither separate flow nor impact in the authors' pump. In the bio-pump, the main flow has the form of logarithmic spiral in vertical section and parabola in cross section, thus there are both stagnation and swirl between the main flow and the straight vanes and shroud. Haemolysis comparative tests demonstrated that the authors' pump has an index of haemolysis of 0.030, less than that of the bio-pump (0.065).


Assuntos
Circulação Assistida/instrumentação , Velocidade do Fluxo Sanguíneo/fisiologia , Fenômenos Fisiológicos Sanguíneos , Centrifugação/instrumentação , Circulação Extracorpórea/instrumentação , Hemólise/fisiologia , Hemorreologia/métodos , Animais , Circulação Assistida/métodos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento/métodos , Análise de Falha de Equipamento/métodos , Circulação Extracorpórea/métodos , Modelos Cardiovasculares , Suínos
5.
ASAIO J ; 48(3): 290-2, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12059003

RESUMO

Our former work demonstrated that our impeller pump could support the circulation of experimental animals for several months without harm to blood elements or organ function. The termination of the experiments was mostly related to wear of the mechanical bearing and thrombosis along the bearing. To solve the bearing problem, we investigated a magnetic bearing in our lab, which resulted in some new problems, such as complicated design and control, considerable energy consumption, and lesser reliability. Progress in developing an impeller pump for long-term application has recently been achieved. Instead of using a sliding bearing system, we devised a rolling bearing system. Its service life is more than 10 years because of a wearproof roller made of ultra high molecular weight polythene. To avoid thrombus formation, we introduced a special purge system to the bearing, allowing the saline with heparin to be infused through the bearing into the pump. The bearing, therefore, keeps working in the saline, and no thrombus will be formed. Animal experiments demonstrated that a 30 ml fluid infusion per hour is enough to prevent thrombus formation. With these improvements, the impeller pump has continuously run for 8 months, and no bearing wear can be measured. The device, weighing 150 g, is fully implantable, consumes approximately 9.6 watts, and delivers a 9L/min blood flow against a 120 mm Hg mean pressure and reaches a highest total efficiency of 24.7% for the motor (including the controller) and pump. The system can produce both pulsatile and nonpulsatile flow according to requirements.


Assuntos
Coração Auxiliar , Animais , Cães , Desenho de Equipamento , Cabras
6.
J Med Eng Technol ; 26(1): 36-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11924845

RESUMO

Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.


Assuntos
Coração Auxiliar , Magnetismo/instrumentação , Rotação , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Sensibilidade e Especificidade
7.
J Med Eng Technol ; 25(1): 25-7, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11345097

RESUMO

For long-term application, rotary pumps have to solve the problems of bearing wear and thrombosis along the bearing. Most investigators choose the magnetic bearing to realize zero-friction and no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. The authors have tried and found, however, that it is difficult to apply a magnetic bearing to the rotary pump without disturbing its simplicity, reliability and implantability, and have therefor developed a much simpler and much more creative approach to achieve the same results. Instead of using a sliding bearing, a rolling bearing has been devised for the pump, and its friction is about 1/15 of the sliding bearing. Furthermore, a wear-proof material of ultra-high-molecular weight polythene has been adopted to make the rollers, and its anti-wear property is 8 times better than metal. Thereby, the service life of the bearing has been prolonged to ten years according to the documents provided by the producer. In order to prevent the thrombus formation along the bearing, the impeller reciprocates axiallly as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is the result of the effects of a magnetic force between the motor rotor and stator, and a hydraulic force between the blood flow and the impeller. Similar to a piston pump, the oscillating impeller can make the blood flow in and out of the bearing, resulting in wash-out once a circle. This obviously helps to prevent thombosis along the bearing and in the pump. The endurance tests with saline of this novel pump demonstrated the durabililty of the device. It promises to be able to assist the circulation of patients permanently, and to be able to replace heart transplantation in the future.


Assuntos
Coração Auxiliar , Desenho de Equipamento
8.
J Med Eng Technol ; 24(6): 273-6, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11315655

RESUMO

Measurement of pump flow and pressure by ventricular assist is an important process, but difficult to achieve. On one hand, the pump flow and pressure are indicators of pump performance and the physiologic status of the receptor, meanwhile providing a control basis of the blood pump itself. On the other hand, the direct measurement forces the receptor to connect with a flow meter and a manometer, and the sensors of these meters may cause haematological problems and increase the danger of infection. A novel method for measuring flow rate and pressure of rotary pump has been developed recently. First the pump performs at several rotating speeds, and at each speed the flow rate, pump head and the motor power (voltage x current) are recorded and shown in diagrams, thus obtaining P (motor power)-Q (pump volume) curves as well as P-H (pump head) curves. Secondly, the P, n (rotating speed) values are loaded into the input layer of a 3-layer BP (back propagation) neural network and the Q and H values into the output layer, to convert P-Q and P-H relations into Q = f (P,n) and H = g (P, n) functions. Thirdly, these functions are stored by computer to establish a database as an archive of this pump. Finally, the pump flow and pressure can be computed from motor power and speed during animal experiments or clinical trials. This new method was used in the authors' impeller pump. The results demonstrated that the error for pump head was less than 2% and that for pump flow was under 5%, so its accuracy is better than that of non-invasive measuring methods.


Assuntos
Coração Auxiliar , Animais , Engenharia Biomédica , Fontes de Energia Elétrica , Humanos , Técnicas In Vitro , Redes Neurais de Computação , Pressão , Desenho de Prótese , Reologia
9.
J Med Eng Technol ; 24(5): 227-9, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11204246

RESUMO

It is evident that a pulsatile flow is important for blood circulation because the flow pulsatility can reduce the resistance of peripheral vessels. It is difficult, however, to produce a pulsatile flow with an impeller pump, since blood damage will occur when a pulsatile flow is produced. Further investigation has revealed that the main factor for blood damage is turbulence shear, which tears the membranes of red blood cells, resulting in free release of haemoglobin into the plasma, and consequently leads to haemolysis. Therefore, the question for developing a pulsatile impeller blood pump is: how to produce a pulsatile flow with low haemolysis? The authors have successively developed a pulsatile axial pump and a pulsatile centrifugal pump. In the pulsatile axial pump, the impeller reciprocates axially and rotates simultaneously. The reciprocation is driven by a pneumatic device and the rotation by a dc motor. For a pressure of 40 mm Hg pulsatility, about 50 mm axial reciprocating amplitude of the impeller is desirable. In order to reduce the axial amplitude, the pump inlet and the impeller both have cone-shaped heads, and the gap between the impeller and the inlet pipe changes by only 2 mm, that is the impeller reciprocates up to 2 mm and a pressure pulsatility of 40 mm Hg can be produced. As the impeller rotates with a constant speed, low turbulence in the pump may be expected. In the centrifugal pulsatile pump, the impeller changes its rotating speed periodically; the turbulence is reduced by designing an impeller with twisted vanes which enable the blood flow to change its direction rather than its magnitude during the periodic change of the rotating speed. In this way, a pulsatile flow is produced and the turbulence is minimized. Compared to the axial pulsatile pump, the centrifugal pulsatile pump needs only one driver and thus has more application possibilities. The centrifugal pulsatile pump has been used in animal experiments. The pump assisted the circulation of calves for several months without harm to the blood elements and the organ functions of the experimental animal. The experiments demonstrated that the pulsatile impeller pump is the most efficient pump for assisting heart recovery, because it can produce a pulsatile flow like a diaphragm pump and has no back flow as occurs in a non-pulsatile rotary pump; the former reduces the circulatory resistance and the latter increases the diastole pressure in aorta and thus increases the perfusion of coronary arteries of the natural heart.


Assuntos
Hemólise , Modelos Cardiovasculares , Fluxo Pulsátil , Animais , Bovinos , Coração Auxiliar/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA