Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171792, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508251

RESUMO

Aiming at the sustainable management of high-moisture Chinese medicine residues (CMR), an alternative way integrating hydrothermal carbonization (HTC), humic acids (HAs) extraction and combustion of remained hydrochar has been proposed in this study. Effect of HTC temperature, HTC duration, and feedwater pH on the mass yield and properties of HAs was examined. The associated formation mechanism of HAs during HTC was proposed. The combustion performance of remained hydrochar after HAs extraction was evaluated. Results show that the positive correlation between hydrochar yield and HAs yield is observed. According to three-dimensional excitation emission matrix (3D EEM) fluorescence intensity, the best quality of HAs is achieved with a yield of 8.17 % at feedwater pH of 13 and HTC temperature of 200 °C. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses show abundant aromatic and aliphatic structure as well as oxygenated functional groups in HAs, which is like commercial HAs (HA-C). Besides, in terms of comprehensive combustion index (CCI), HTC can improve the combustion performance of CMR, while it becomes a bit worse after HAs extraction. Higher weighted mean apparent activation energy (Em) of hydrochar indicating its highly thermal stability. HAs extraction reduces Em and CCI of remained hydrochar. However, it can be regarded a potential renewable energy. This work confirms a more sustainable alternative way for CMR comprehensive utilization in near future.

2.
Biomass Convers Biorefin ; : 1-18, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36627933

RESUMO

High moisture in Chinese medicine residues (CMR) can decrease the energy efficiency of thermochemical conversion, which necessitates the pre-drying. Owing to the complex constituents and decoction, CMR may possess distinct drying characteristics. It is necessary to understand its drying behaviors, effective moisture diffusivity, and pollutant emissions for future design and optimization of an industrial-level dryer. In this study, the drying of four types of typical CMR in hot nitrogen was performed. Their condensate and exhaust gas were collected and characterized. The results indicated that their drying process was dominated by internal moisture transport mechanism with a long falling rate stage. Drying temperature influenced their drying process more greatly than N2 velocity did. Residual sum of squares, root mean square error, and coefficient of determination indicated that Weibull model demonstrated their drying process best. Their effective moisture diffusivity was in the range of 1.224 × 10-8 to 4.868 × 10-8 m2/s, while their drying activation energy ranged from 16.93 to 30.39 kJ/mol. The acidic condensate had high chemical oxygen demand and total nitrogen concentration and yet low total phosphorus concentration. The concentration of total volatile organic compounds, non-methane hydrocarbons, H2S, and NH3 in the exhaust gas met the national emission limitation, while the deodorization of exhaust gas was required to remove odor smell. Supplementary information: The online version contains supplementary material available at 10.1007/s13399-022-03722-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...