Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Ann Neurol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606373

RESUMO

OBJECTIVE: Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS: Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS: Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION: Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.

2.
Neurotherapeutics ; 20(5): 1294-1304, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278968

RESUMO

MOGHE is defined as mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Approximately half of the patients with histopathologically confirmed MOGHE carry a brain somatic variant in the SLC35A2 gene encoding a UDP-galactose transporter. Previous research showed that D-galactose supplementation results in clinical improvement in patients with a congenital disorder of glycosylation due to germline variants in SLC35A2. We aimed to evaluate the effects of D-galactose supplementation in patients with histopathologically confirmed MOGHE, with uncontrolled seizures or cognitive impairment and epileptiform activity at the EEG after epilepsy surgery (NCT04833322). Patients were orally supplemented with D-galactose for 6 months in doses up to 1.5 g/kg/day and monitored for seizure frequency including 24-h video-EEG recording, cognition and behavioral scores, i.e., WISC, BRIEF-2, SNAP-IV, and SCQ, and quality of life measures, before and 6 months after treatment. Global response was defined by > 50% improvement of seizure frequency and/or cognition and behavior (clinical global impression of "much improved" or better). Twelve patients (aged 5-28 years) were included from three different centers. Neurosurgical tissue samples were available in all patients and revealed a brain somatic variant in SLC35A2 in six patients (non-present in the blood). After 6 months of supplementation, D-galactose was well tolerated with just two patients presenting abdominal discomfort, solved after dose spacing or reduction. There was a 50% reduction or higher of seizure frequency in 3/6 patients, with an improvement at EEG in 2/5 patients. One patient became seizure-free. An improvement of cognitive/behavioral features encompassing impulsivity (mean SNAP-IV - 3.19 [- 0.84; - 5.6]), social communication (mean SCQ - 2.08 [- 0.63; - 4.90]), and executive function (BRIEF-2 inhibit - 5.2 [- 1.23; - 9.2]) was observed. Global responder rate was 9/12 (6/6 in SLC35A2-positive). Our results suggest that supplementation with D-galactose in patients with MOGHE is safe and well tolerated and, although the efficacy data warrant larger studies, it might build a rationale for precision medicine after epilepsy surgery.


Assuntos
Epilepsia , Galactose , Humanos , Medicina de Precisão , Hiperplasia , Projetos Piloto , Qualidade de Vida , Epilepsia/terapia , Convulsões , Eletroencefalografia/métodos
3.
Genet Med ; 25(9): 100894, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183800

RESUMO

PURPOSE: The "NALCN channelosome" is an ion channel complex that consists of multiple proteins, including NALCN, UNC79, UNC80, and FAM155A. Only a small number of individuals with a neurodevelopmental syndrome have been reported with disease causing variants in NALCN and UNC80. However, no pathogenic UNC79 variants have been reported, and in vivo function of UNC79 in humans is largely unknown. METHODS: We used international gene-matching efforts to identify patients harboring ultrarare heterozygous loss-of-function UNC79 variants and no other putative responsible genes. We used genetic manipulations in Drosophila and mice to test potential causal relationships between UNC79 variants and the pathology. RESULTS: We found 6 unrelated and affected patients with UNC79 variants. Five patients presented with overlapping neurodevelopmental features, including mild to moderate intellectual disability and a mild developmental delay, whereas a single patient reportedly had normal cognitive and motor development but was diagnosed with epilepsy and autistic features. All displayed behavioral issues and 4 patients had epilepsy. Drosophila with UNC79 knocked down displayed induced seizure-like phenotype. Mice with a heterozygous loss-of-function variant have a developmental delay in body weight compared with wild type. In addition, they have impaired ability in learning and memory. CONCLUSION: Our results demonstrate that heterozygous loss-of-function UNC79 variants are associated with neurologic pathologies.


Assuntos
Epilepsia , Deficiência Intelectual , Proteínas de Membrana , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Drosophila/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Membrana/genética
4.
Epilepsia ; 64(8): e170-e176, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114479

RESUMO

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Epilepsias Mioclônicas Progressivas , Mioclonia , Humanos , Criança , Mutação , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas/patologia , Família , Proteínas de Transporte/genética , Proteínas Nucleares/genética
5.
Neurology ; 100(6): e603-e615, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36307226

RESUMO

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Assuntos
Epilepsia Generalizada , Epilepsia , Canais de Potássio Éter-A-Go-Go , Criança , Humanos , Recém-Nascido , Epilepsia/genética , Epilepsia Generalizada/genética , Mutação , Fenótipo , Convulsões/genética , Canais de Potássio Éter-A-Go-Go/genética
6.
Eur J Med Genet ; 65(11): 104624, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36130690

RESUMO

Ritscher-Schinzel syndrome (RTSCS) is a rare genetic condition characterized by peculiar craniofacial features and cerebellar and cardiovascular malformations. To date, four genes are implicated in this condition. The first two genes described were the autosomal recessive inherited gene WASHC5 associated with Ritscher-Schinzel syndrome 1 (RTSCS1), and CCDC22, an X-linked recessive gene causing Ritscher-Schinzel syndrome 2 (RTSCS2). In recent years, two other genes have been identified: VPS35L (RTSCS3) and DPYSL5 (RTSCS4). Only few patients with a molecular diagnosis of RTSCS have been reported, leaving the phenotypical spectrum and genotype-phenotype correlations ill-defined. We expand the number of genetically confirmed patients with RTSCS1 and 2; reporting three live born and three terminated pregnancies from two unrelated families. Four siblings carried compound heterozygous variants in WASHC5 while two siblings harboured a hemizygous CCDC22 variant. The most common findings in all patients were craniofacial dysmorphism, particularly macrocephaly, down slanted palpebral fissures and low set-ears. Developmental delay, intellectual disability and ataxic gait were present in all patients. One of the patients with the CCDC22 variant presented pubertas tarda. Elevation of nuchal translucency was observed in the first trimester ultrasound in three foetuses with compound heterozygous variants in WASHC5. None of the patients had epilepsy. The pre- and postnatal findings of this cohort expand the known phenotype of RTSCS1 and 2, with direct impact on postnatal outcome, management, and familial counseling.


Assuntos
Anormalidades Craniofaciais , Síndrome de Dandy-Walker , Feminino , Humanos , Gravidez , Anormalidades Múltiplas , Anormalidades Craniofaciais/genética , Síndrome de Dandy-Walker/genética , Comunicação Interatrial , Hidrolases/genética , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Proteínas/genética , Síndrome
7.
Neurotherapeutics ; 19(4): 1353-1367, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35723786

RESUMO

We assessed the frequency of pediatric monogenic epilepsies and precision therapies at a tertiary epilepsy center. We analyzed medical records of children, born in 2006-2011 and followed at the Danish Epilepsy Center from January to December 2015; 357 patients were identified, of whom 27 without epilepsy and 35 with acquired brain damage were excluded. Of the remaining 295 children, 188 were consented for study inclusion and genetic testing. At inclusion, 86/188 had a preexisting genetic diagnosis and did not undergo further genetic testing. The 102 genetically unsolved patients underwent WES, which identified a (likely) pathogenic variant in eight patients and a highly relevant variant of unknown significance (VUS) in seven additional patients. Single nucleotide polymorphism array was performed in the remaining 87 patients and revealed no (likely) pathogenic copy number variants (CNVs). Patients with a genetic diagnosis had a significantly lower median age at seizure onset and more often had febrile seizures, status epilepticus, or neurodevelopmental impairment compared to those who remained genetically unsolved. Most common epilepsies were focal or multifocal epilepsies and developmental and epileptic encephalopathies (DDEs). Fifty-three patients, with a putative genetic diagnosis, were potentially eligible for precision therapy approaches. Indeed, genetic diagnosis enabled treatment adjustment in 32/53 (60%); 30/32 (93%) patients experienced at least a 50% reduction in seizure burden while only 4/32 (12.5%) became seizure-free. In summary, a genetic diagnosis was achieved in approximately 50% of patients with non-acquired epilepsy enabling precision therapy approaches in half of the patients, a strategy that results in > 50% reduction in seizure burden, in the majority of the treated patients.


Assuntos
Epilepsia , Humanos , Criança , Adolescente , Epilepsia/diagnóstico , Epilepsia/genética , Testes Genéticos/métodos
8.
Brain ; 145(4): 1299-1309, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34633442

RESUMO

A potential link between GABRD encoding the δ subunit of extrasynaptic GABAA receptors and neurodevelopmental disorders has largely been disregarded due to conflicting conclusions from early studies. However, we identified seven heterozygous missense GABRD variants in 10 patients with neurodevelopmental disorders and generalized epilepsy. One variant occurred in two sibs of healthy parents with presumed somatic mosaicism, another segregated with the disease in three affected family members, and the remaining five occurred de novo in sporadic patients. Electrophysiological measurements were used to determine the functional consequence of the seven missense δ subunit variants in receptor combinations of α1ß3δ and α4ß2δ GABAA receptors. This was accompanied by analysis of electroclinical phenotypes of the affected individuals. We determined that five of the seven variants caused altered function of the resulting α1ß3δ and α4ß2δ GABAA receptors. Surprisingly, four of the five variants led to gain-of-function effects, whereas one led to a loss-of-function effect. The stark differences between the gain-of-function and loss-of function effects were mirrored by the clinical phenotypes. Six patients with gain-of-function variants shared common phenotypes: neurodevelopmental disorders with behavioural issues, various degrees of intellectual disability, generalized epilepsy with atypical absences and generalized myoclonic and/or bilateral tonic-clonic seizures. The EEG showed qualitative analogies among the different gain-of-function variant carriers consisting of focal slowing in the occipital regions often preceding irregular generalized epileptiform discharges, with frontal predominance. In contrast, the one patient carrying a loss-of-function variant had normal intelligence and no seizure history, but has a diagnosis of autism spectrum disorder and suffers from elevated internalizing psychiatric symptoms. We hypothesize that increase in tonic GABA-evoked current levels mediated by δ-containing extrasynaptic GABAA receptors lead to abnormal neurotransmission, which represent a novel mechanism for severe neurodevelopmental disorders. In support of this, the electroclinical findings for the gain-of-function GABRD variants resemble the phenotypic spectrum reported in patients with missense SLC6A1 (GABA uptake transporter) variants. This also indicates that the phenomenon of extrasynaptic receptor overactivity is observed in a broader range of patients with neurodevelopmental disorders, because SLC6A1 loss-of-function variants also lead to overactive extrasynaptic δ-containing GABAA receptors. These findings have implications when selecting potential treatment options, as a substantial portion of available antiseizure medication act by enhancing GABAergic function either directly or indirectly, which could exacerbate symptoms in patients with gain-of-function GABRD variants.


Assuntos
Transtorno do Espectro Autista , Epilepsia Generalizada , Epilepsia , Proteínas da Membrana Plasmática de Transporte de GABA , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Epilepsia/genética , Epilepsia Generalizada/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Mutação com Ganho de Função , Humanos , Transtornos do Neurodesenvolvimento/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Convulsões/genética , Ácido gama-Aminobutírico/metabolismo
9.
Brain ; 145(9): 2991-3009, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34431999

RESUMO

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Assuntos
Epilepsia Generalizada , Síndromes Epilépticas , Deficiência Intelectual , Canal de Sódio Disparado por Voltagem NAV1.6 , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/genética , Estudos de Associação Genética , Humanos , Lactente , Deficiência Intelectual/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Prognóstico , Convulsões/tratamento farmacológico , Convulsões/genética , Bloqueadores dos Canais de Sódio/uso terapêutico
10.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34114611

RESUMO

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Assuntos
Epilepsia/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio Ativados por Sódio/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Masculino , Mutação , Fenótipo , Adulto Jovem
11.
Nat Commun ; 12(1): 2678, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976153

RESUMO

Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transcriptoma/genética , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Modelos Animais de Doenças , Epigênese Genética , Asseio Animal/fisiologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Células Sf9 , Spodoptera
12.
Eur J Med Genet ; 64(7): 104246, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020006

RESUMO

The Ritscher-Schinzel syndrome (RTSCS) is a rare condition with craniofacial, cardiac and fossa posterior abnormalities. RTSCS is subdivided into Ritscher-Schinzel syndrome 1 (RTSCS1) caused by pathogenic variants in coiled-coil domain-containing protein 22 (CCDC22), and Ritscher-Schinzel syndrome 2 (RTSCS2) caused by pathogenic variants in WASH complex subunit 5 (WASHC5). CCDC22 is inherited in an X-linked recessive manner while WASHC5 is inherited in an autosomal recessive manner. Only 17 individuals with a molecular diagnosis are reported. In the past, the diagnosis of RTSCS was solely based on the clinical findings, and minimal diagnostic criteria has been proposed for the syndrome: Cardiac malformations (other than isolated patent ductus arteriosis), fossa posterior malformations, and certain dysmorphic features. However, those criteria are not present in all patients. We aim to further delineate the spectrum of CDCC22 associated RTSCS and present a novel patient with epileptic encephalopathy due to a presumed disease causing CCDC22 missense variant inherited from a healthy mother and grandmother. An affected maternal uncle had passed away at the age of 12 months and was thus unavailable for genetic testing. The proband and the maternal uncle had the typical facial dysmorphism associated with RTSCS, and they closely resembled previously published RTSCS2 patients with a molecular diagnosis. This suggests that RTSCS1 and RTSCS2 patients have a similar facial gestalt. We also review the literature on RTSCS, we explore potential differences and similarities between CCDC22 and W ASHC5 associated RTSCS and discuss the minimal diagnostic criteria.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Síndrome de Dandy-Walker/genética , Comunicação Interatrial/genética , Fenótipo , Proteínas/genética , Anormalidades Múltiplas/diagnóstico , Adolescente , Anormalidades Craniofaciais/diagnóstico , Síndrome de Dandy-Walker/diagnóstico , Diagnóstico Diferencial , Comunicação Interatrial/diagnóstico , Humanos , Masculino , Mutação de Sentido Incorreto
13.
Brain ; 143(4): 1114-1126, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293671

RESUMO

Congenital disorders of glycosylation are a growing group of rare genetic disorders caused by deficient protein and lipid glycosylation. Here, we report the clinical, biochemical, and molecular features of seven patients from four families with GALNT2-congenital disorder of glycosylation (GALNT2-CDG), an O-linked glycosylation disorder. GALNT2 encodes the Golgi-localized polypeptide N-acetyl-d-galactosamine-transferase 2 isoenzyme. GALNT2 is widely expressed in most cell types and directs initiation of mucin-type protein O-glycosylation. All patients showed loss of O-glycosylation of apolipoprotein C-III, a non-redundant substrate for GALNT2. Patients with GALNT2-CDG generally exhibit a syndrome characterized by global developmental delay, intellectual disability with language deficit, autistic features, behavioural abnormalities, epilepsy, chronic insomnia, white matter changes on brain MRI, dysmorphic features, decreased stature, and decreased high density lipoprotein cholesterol levels. Rodent (mouse and rat) models of GALNT2-CDG recapitulated much of the human phenotype, including poor growth and neurodevelopmental abnormalities. In behavioural studies, GALNT2-CDG mice demonstrated cerebellar motor deficits, decreased sociability, and impaired sensory integration and processing. The multisystem nature of phenotypes in patients and rodent models of GALNT2-CDG suggest that there are multiple non-redundant protein substrates of GALNT2 in various tissues, including brain, which are critical to normal growth and development.


Assuntos
Apolipoproteína C-III/sangue , Deficiências do Desenvolvimento/genética , N-Acetilgalactosaminiltransferases/genética , Adolescente , Animais , Apolipoproteína C-III/genética , Criança , Pré-Escolar , Feminino , Glicosilação , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Linhagem , Ratos , Adulto Jovem , Polipeptídeo N-Acetilgalactosaminiltransferase
14.
Epilepsia ; 60(5): 830-844, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30968951

RESUMO

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.


Assuntos
Epilepsia/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Anticonvulsivantes/uso terapêutico , Ataxia/genética , Criança , Pré-Escolar , Disfunção Cognitiva/genética , Eletroencefalografia , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos dos Movimentos/genética , Hipotonia Muscular/genética , Linhagem , Índice de Gravidade de Doença
15.
Glia ; 64(3): 407-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26496662

RESUMO

Infiltration of myelin-specific T cells into the central nervous system induces the expression of proinflammatory cytokines in patients with multiple sclerosis (MS). We have previously shown that myelin-specific T cells are recruited into zones of axonal degeneration, where they stimulate lesion-reactive microglia. To gain mechanistic insight, we used RNA microarray analysis to compare the transcript profile in hippocampi from perforant pathway axonal-lesioned mice with and without adoptively transferred myelin-specific T cells 2 days postlesion, when microglia are clearly lesion reactive. Pathway analysis revealed that, among the 1,447 differently expressed transcripts, the interleukin (IL)-1 pathway including all IL-1 receptor ligands was upregulated in the presence of myelin-specific T cells. Quantitative polymerase chain reaction showed increased mRNA levels of IL-1ß, IL-1α, and IL-1 receptor antagonist in the T-cell-infiltrated hippocampi from axonal-lesioned mice. In situ hybridization and immunohistochemistry showed a T-cell-enhanced lesion-specific expression of IL-1ß mRNA and protein, respectively, and induction of the apoptosis-associated speck-like protein, ASC, in CD11b(+) cells. Double in situ hybridization showed colocalization of IL-1ß mRNA in a subset of CD11b mRNA(+) cells, of which many were part of cellular doublets or clusters, characteristic of proliferating, lesion-reactive microglia. Double-immunofluorescence showed a T-cell-enhanced colocalization of IL-1ß to CD11b(+) cells, including lesion-reactive CD11b(+) ramified microglia. These results suggest that myelin-specific T cells stimulate lesion-reactive microglial-like cells to produce IL-1ß. These findings are relevant to understand the consequences of T-cell infiltration in white and gray matter lesions in patients with MS.


Assuntos
Axônios/metabolismo , Interleucina-1beta/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Doenças Neurodegenerativas/patologia , Linfócitos T/fisiologia , Transferência Adotiva , Análise de Variância , Animais , Citocinas/genética , Citocinas/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Feminino , Fluoresceínas/metabolismo , Interleucina-1beta/genética , Camundongos , Análise em Microsséries , Infiltração de Neutrófilos , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...