Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1368572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698852

RESUMO

Introduction: Interferon-gamma (IFN-γ) is pivotal in orchestrating immune responses during healthy pregnancy. However, its dysregulation, often due to autoimmunity, infections, or chronic inflammatory conditions, is implicated in adverse reproductive outcomes such as pregnancy failure or infertility. Additionally, the underlying immunological mechanisms remain elusive. Methods: Here, we explore the impact of systemic IFN-γ elevation on cytotoxic T cell responses in female reproduction utilizing a systemic lupus-prone mouse model with impaired IFN-γ degradation. Results: Our findings reveal that heightened IFN-γ levels triggered the infiltration of CD8+T cells in the pituitary gland and female reproductive tract (FRT), resulting in prolactin deficiency and subsequent infertility. Furthermore, we demonstrate that chronic IFN-γ elevation increases effector memory CD8+T cells in the murine ovary and uterus. Discussion: These insights broaden our understanding of the role of elevated IFN-γ in female reproductive dysfunction and suggest CD8+T cells as potential immunotherapeutic targets in female reproductive disorders associated with chronic systemic IFN-γ elevation.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Animais , Feminino , Interferon gama/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/imunologia , Útero/imunologia , Infertilidade Feminina/imunologia , Hipófise/imunologia , Hipófise/metabolismo , Camundongos Endogâmicos C57BL , Gravidez , Prolactina/metabolismo , Ovário/imunologia
2.
medRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370835

RESUMO

Patients diagnosed with localized high-risk prostate cancer have higher rates of recurrence, and the introduction of neoadjuvant intensive hormonal therapies seeks to treat occult micrometastatic disease by their addition to definitive treatment. Sufficient profiling of baseline disease has remained a challenge in enabling the in-depth assessment of phenotypes associated with exceptional vs. poor pathologic responses after treatment. In this study, we report comprehensive and integrative gene expression profiling of 37 locally advanced prostate tumors prior to six months of androgen deprivation therapy (ADT) plus the androgen receptor (AR) inhibitor enzalutamide prior to radical prostatectomy. A robust transcriptional program associated with HER2 activity was positively associated with poor outcome and opposed AR activity, even after adjusting for common genomic alterations in prostate cancer including PTEN loss and expression of the TMPRSS2:ERG fusion. Patients experiencing exceptional pathologic responses demonstrated lower levels of HER2 and phospho-HER2 by immunohistochemistry of biopsy tissues. The inverse correlation of AR and HER2 activity was found to be a universal feature of all aggressive prostate tumors, validated by transcriptional profiling an external cohort of 121 patients and immunostaining of tumors from 84 additional patients. Importantly, the AR activity-low, HER2 activity-high cells that resist ADT are a pre-existing subset of cells that can be targeted by HER2 inhibition alone or in combination with enzalutamide. In summary, we show that prostate tumors adopt an AR activity-low prior to antiandrogen exposure that can be exploited by treatment with HER2 inhibitors.

3.
J Pathol ; 260(3): 276-288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37185821

RESUMO

The effect of cytokines on non-traditional immunological targets under conditions of chronic inflammation is an ongoing subject of study. Fatigue is a symptom often associated with autoimmune diseases. Chronic inflammatory response and activated cell-mediated immunity are associated with cardiovascular myopathies which can be driven by muscle weakness and fatigue. Thus, we hypothesize that immune dysfunction-driven changes in myocyte mitochondria may play a critical role in fatigue-related pathogenesis. We show that persistent low-level expression of IFN-γ in designated IFN-γ AU-Rich Element deletion mice (ARE mice) under androgen exposure resulted in mitochondrial and metabolic deficiencies in myocytes from male or castrated ARE mice. Most notably, echocardiography unveiled that low ejection fraction in the left ventricle post-stress correlated with mitochondrial deficiencies, explaining how heart function decreases under stress. We report that inefficiencies and structural changes in mitochondria, with changes to expression of mitochondrial genes, are linked to male-biased fatigue and acute cardiomyopathy under stress. Our work highlights how male androgen hormone backgrounds and active autoimmunity reduce mitochondrial function and the ability to cope with stress and how pharmacological blockade of stress signal protects heart function. These studies provide new insight into the diverse actions of IFN-γ in fatigue, energy metabolism, and autoimmunity. © 2023 The Pathological Society of Great Britain and Ireland. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Androgênios , Interferon gama , Animais , Masculino , Camundongos , Androgênios/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Células Musculares/metabolismo
4.
Cancer Res ; 81(23): 5977-5990, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34642183

RESUMO

The relationship between cancer and autoimmunity is complex. However, the incidence of solid tumors such as melanoma has increased significantly among patients with previous or newly diagnosed systemic autoimmune disease (AID). At the same time, immune checkpoint blockade (ICB) therapy of cancer induces de novo autoinflammation and exacerbates underlying AID, even without evident antitumor responses. Recently, systemic lupus erythematosus (SLE) activity was found to drive myeloid-derived suppressor cell (MDSC) formation in patients, a known barrier to healthy immune surveillance and successful cancer immunotherapy. Cross-talk between MDSCs and macrophages generally drives immune suppressive activity in the tumor microenvironment. However, it remains unclear how peripheral pregenerated MDSC under chronic inflammatory conditions modulates global macrophage immune functions and the impact it could have on existing tumors and underlying lupus nephritis. Here we show that pathogenic expansion of SLE-generated MDSCs by melanoma drives global macrophage polarization and simultaneously impacts the severity of lupus nephritis and tumor progression in SLE-prone mice. Molecular and functional data showed that MDSCs interact with autoimmune macrophages and inhibit cell surface expression of CD40 and the production of IL27. Moreover, low CD40/IL27 signaling in tumors correlated with high tumor-associated macrophage infiltration and ICB therapy resistance both in murine and human melanoma exhibiting active IFNγ signatures. These results suggest that preventing global macrophage reprogramming induced by MDSC-mediated inhibition of CD40/IL27 signaling provides a precision melanoma immunotherapy strategy, supporting an original and advantageous approach to treat solid tumors within established autoimmune landscapes. SIGNIFICANCE: Myeloid-derived suppressor cells induce macrophage reprogramming by suppressing CD40/IL27 signaling to drive melanoma progression, simultaneously affecting underlying autoimmune disease and facilitating resistance to immunotherapy within preexisting autoimmune landscapes.


Assuntos
Autoimunidade , Antígenos CD40/metabolismo , Interleucina-27/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Macrófagos/patologia , Melanoma/patologia , Células Supressoras Mieloides/patologia , Animais , Imunoterapia , Macrófagos/imunologia , Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Microambiente Tumoral
5.
J Autoimmun ; 111: 102436, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220507

RESUMO

Low grade, chronic inflammation is a critical risk factor for immunologic dysfunction including autoimmune diseases. However, the multiplicity of complex mechanisms and lack of relevant murine models limit our understanding of the precise role of chronic inflammation. To address these hurdles, we took advantage of multi-omics data and a unique murine model with a low but chronic expression of IFN-γ, generated by replacement of the AU-rich element (ARE) in the 3' UTR region of IFN-γ mRNA with random nucleotides. Herein, we demonstrate that low but differential expression of IFN-γ in mice by homozygous or heterozygous ARE replacement triggers distinctive gut microbial alterations, of which alteration is female-biased with autoimmune-associated microbiota. Metabolomics data indicates that gut microbiota-dependent metabolites have more robust sex-differences than microbiome profiling, particularly those involved in fatty acid oxidation and nuclear receptor signaling. More importantly, homozygous ARE-Del mice have dramatic changes in tryptophan metabolism, bile acid and long-chain lipid metabolism, which interact with gut microbiota and nuclear receptor signaling similarly with sex-dependent metabolites. Consistent with these findings, nuclear receptor signaling, encompassing molecules such as PPARs, FXR, and LXRs, was detectable as a top canonical pathway in comparison of blood and tissue-specific gene expression between female homozygous vs heterozygous ARE-Del mice. Further analysis implies that dysregulated autophagy in macrophages is critical for breaking self-tolerance and gut homeostasis, while pathways interact with nuclear receptor signaling to regulate inflammatory responses. Overall, pathway-based integration of multi-omics data provides systemic and cellular insights about how chronic inflammation driven by IFN-γ results in the development of autoimmune diseases with specific etiopathological features.


Assuntos
Doenças Autoimunes/imunologia , Disbiose/imunologia , Inflamação/imunologia , Interferon gama/metabolismo , Macrófagos/imunologia , Regiões 3' não Traduzidas/genética , Elementos Ricos em Adenilato e Uridilato/genética , Animais , Autofagia , Doença Crônica , Feminino , Microbioma Gastrointestinal/imunologia , Interferon gama/genética , Masculino , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/metabolismo , Sexismo , Transdução de Sinais
6.
Hepatology ; 67(4): 1408-1419, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28921595

RESUMO

We have reported on a murine model of autoimmune cholangitis, generated by altering the AU-rich element (ARE) by deletion of the interferon gamma (IFN-γ) 3' untranslated region (coined ARE-Del-/- ), that has striking similarities to human primary biliary cholangitis (PBC) with female predominance. Previously, we suggested that the sex bias of autoimmune cholangitis was secondary to intense and sustained type I and II IFN signaling. Based on this thesis, and to define the mechanisms that lead to portal inflammation, we specifically addressed the hypothesis that type I IFNs are the driver of this disease. To accomplish these goals, we crossed ARE-Del-/- mice with IFN type I receptor alpha chain (Ifnar1) knockout mice. We report herein that loss of type I IFN receptor signaling in the double construct of ARE-Del-/- Ifnar1-/- mice dramatically reduces liver pathology and abrogated sex bias. More importantly, female ARE-Del-/- mice have an increased number of germinal center (GC) B cells as well as abnormal follicular formation, sites which have been implicated in loss of tolerance. Deletion of type I IFN signaling in ARE-Del-/- Ifnar1-/- mice corrects these GC abnormalities, including abnormal follicular structure. CONCLUSION: Our data implicate type I IFN signaling as a necessary component of the sex bias of this murine model of autoimmune cholangitis. Importantly these data suggest that drugs that target the type I IFN signaling pathway would have potential benefit in the earlier stages of PBC. (Hepatology 2018;67:1408-1419).


Assuntos
Doenças Autoimunes/imunologia , Colangite/imunologia , Interferon Tipo I/genética , Fígado/patologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores Sexuais , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...