Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1098387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960454

RESUMO

Introduction: While substantial research has focused on the contribution of sex hormones to driving elevated levels of alcohol drinking in female rodents, fewer studies have investigated how genetic influences may underlie sex differences in this behavior. Methods: We used the Four Core Genotypes (FCG) mouse model to explore the contribution of sex chromosome complement (XX/XY) and gonad type [ovaries (Sry-)/testes (Sry+)] to ethanol (EtOH) consumption and quinine-resistant drinking across two voluntary self-administration tasks: limited access consumption in the home cage and an operant response task. Results: For limited access drinking in the dark, XY/Sry + (vs. XX/Sry +) mice consumed more 15% EtOH across sessions while preference for 15% EtOH vs. water was higher in XY vs. XX mice regardless of gonad type. XY chromosomes promoted quinine-resistant drinking in mice with ovaries (Sry-) and the estrous cycle did not affect the results. In the operant response task, responding for EtOH was concentration dependent in all genotypes except XX/Sry + mice, which maintained consistent response levels across all concentrations (5-20%) of EtOH. When increasing concentrations of quinine (100-500 µM) were added to the solution, FCG mice were insensitive to quinine-punished EtOH responding, regardless of sex chromosome complement. Sry + mice were further found to be insensitive to quinine when presented in water. Importantly, these effects were not influenced by sensitivity to EtOH's sedative effect, as no differences were observed in the time to lose the righting reflex or the time to regain the righting reflex between genotypes. Additionally, no differences in EtOH concentration in the blood were observed between any of the genotypes once the righting reflex was regained. Discussion: These results provide evidence that sex chromosome complement regulates EtOH consumption, preference, and aversion resistance and add to a growing body of literature suggesting that chromosomal sex may be an important contributor to alcohol drinking behaviors. Examination of sex-specific genetic differences may uncover promising new therapeutic targets for high-risk drinking.

2.
Alcohol Clin Exp Res (Hoboken) ; 47(4): 678-686, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822578

RESUMO

BACKGROUND: One characteristic of alcohol use disorder is compulsive drinking or drinking despite negative consequences. When quinine is used to model such aversion-resistant drinking, female rodents typically are more resistant to punishment than males. Using an operant response task where C57BL/6J responded for ethanol mixed with quinine, we previously demonstrated that female mice tolerate higher concentrations of quinine in ethanol than males. Here, we aimed to determine whether this female vulnerability to aversion-resistant drinking behavior is similarly observed with footshock punishment. METHODS: Male and female C57BL/6J mice were trained to respond for 10% ethanol in an operant task on a fixed-ratio three schedule. After consistent responding, mice were tested in a punishment session using either a 0.25 mA or 0.35 milliamp (mA) footshock. To assess footshock sensitivity, a subset of mice underwent a flinch, jump, and vocalize test in which behavioral responses to increasing amplitudes of footshock (0.05 to 0.95 mA) were assessed. In a separate cohort of mice, males and females were trained to respond for 2.5% sucrose and responses were punished using a 0.25 mA footshock. RESULTS: Males and females continued to respond for 10% ethanol when paired with a 0.25 mA footshock. Females alone continued to respond for ethanol when a 0.35 mA footshock was delivered. Both males and females reduced responding for 2.5% sucrose when punished with a 0.25 mA footshock. Footshock sensitivity in the flinch, jump, and vocalize test did not differ by sex. CONCLUSIONS: Females continue to respond for 10% ethanol despite a 0.35 mA footshock, and this behavior is not due to differences in footshock sensitivity between males and females. These results show that female C57BL/6J mice are generally more resistant to punishment in an operant self-administration paradigm. The findings add to the literature characterizing aversion-resistant alcohol-drinking behaviors in females.


Assuntos
Etanol , Punição , Camundongos , Masculino , Feminino , Animais , Etanol/farmacologia , Condicionamento Operante/fisiologia , Camundongos Endogâmicos C57BL , Quinina , Consumo de Bebidas Alcoólicas , Autoadministração , Sacarose
3.
Alcohol ; 105: 35-42, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272659

RESUMO

A symptom of alcohol use disorder (AUD) is compulsive drinking, or drinking that persists despite negative consequences. In mice, aversion-resistant models are used to model compulsive-like drinking by pairing the response for alcohol with a footshock or by adding quinine, a bitter tastant, to the alcohol solution. crossed High Alcohol Preferring (cHAP) mice, a selectively bred line of mice that consumes pharmacologically relevant levels of alcohol, demonstrate a high level of aversion-resistance to quinine-adulterated alcohol. The current study investigated quinine-resistant and footshock-resistant responding for 10% ethanol in male and female cHAP mice with vs. without a history of alcohol exposure. cHAP mice were first trained to respond for 10% ethanol in an operant-response task. Next, mice were exposed to water or 10% ethanol for twelve 24-h sessions using a two-bottle choice procedure. Footshock-resistant ethanol responding was then tested in the operant chamber by pairing a footshock (0.35 mA) with the nose-poke response during one session. Quinine-resistant responding for alcohol was tested over five sessions (500-2500 µM quinine). Finally, footshock sensitivity was assessed using a flinch, jump, vocalize test. Alcohol exposure history did not influence responses for 10% ethanol or either measure of aversion-resistance. Further, cHAP mice were sensitive to footshock punishment but continued to respond for alcohol at all quinine concentrations. No sex differences were observed in any measure of alcohol responding, but female cHAP mice were less sensitive to footshock than males. These results replicate and extend the previous demonstration of a robust, innate resistance to quinine aversion in cHAP mice and further suggest that this tendency is not observed when footshock is used to punish drinking.


Assuntos
Etanol , Quinina , Feminino , Masculino , Camundongos , Animais , Quinina/farmacologia , Etanol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA